Республика Беларусь
Белорусский государственный
университет транспорта
Кафедра «Электротехника»
РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА №3 по курсу ТЛЭЦ
“ Расчет цепочечных и полиноминальных фильтров ”
шифр № 546
ВЫПОЛНИЛ: ПРИНЯЛ:
студент группы ЭМ-31 ассистент
Муравьев С.В. Грапов А.В.
г. Гомель 2004г.
Расчет цепочечных и полиноминальных фильтров.
Рассчитать электрический фильтр для работы между генератором и приёмником, имеющий заданную частотную характеристику затухания.
Исходные данные:
Дополнительное
затухание в полосе пропускания ![]()
Минимальное затухание в полосе
задержки на частоте
![]()
Частоты среза
![]()
Фиксированная частота в полосе
задержки ![]()
Сопротивление нагрузки ![]()
Тип – фильтр Чебышева.

● Из-за несогласованности фильтра
с нагрузкой возникает дополнительное затухание, поэтому расчётное значение
в ПЗ следует увеличить на величину 0.69 Нп:
![]()
● Определим частоты:
а) среднеквадратичную полосно-пропускающего фильтра:
![]()
б) граничную
нижней полосы задержки: 
● Коэффициент
преобразования ПП составляет 
● Нормированная частота ФПНЧ:

В качестве проверки: ![]()
● Далее найдём порядок ФПНЧ. Для этого воспользуемся следующей формулой:

Т. к. округление необходимо проводить в сторону увеличения значения, примем n=6.
● Определим передаточную функцию в нормированных величинах.
где
-
полином Гурвица.
Вначале найдём вспомогательные постоянные для определения полюсов передаточной функции:


Первоначальное количество полюсов
Рассчитываем
полюсы передаточной функции фильтра Чебышева по формуле:
В результате расчёта получим:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Из этих
12-ти значений выбираем те, у которых действительная часть отрицательна, т.е.
первые шесть (
). Полином
Гурвица имеет вид:

Полином Гурвица шестого порядка упрощается до многочлена шестой степени с коэффициентами:
![]()
Таким образом, полином Гурвица можно представить в следующем виде:
![]()
● Далее найдём функцию фильтрации.
1) Составим полином Чебышева 6-ого порядка (используя мат. справочник)
![]()
2) Получим выражение нормированного значения полинома Чебышева:

3) В последнем выражении заменим
на переменную
; при
этом все его члены считаются положительными независимо от их знака: ![]()
Входное сопротивление ФПНЧ в нормированных величинах:

Разложив данную дробь в цепную, получим (разложение приведено ниже):

Отсюда нормированные значения элементов ФПНЧ:
![]()

Схема ФПНЧ с нормированными элементами:
Перейдём от ФПНЧ к ППФ в нормированном виде.


Схема полосопропускающего фильтра
Коэффициенты денормирования элементов:
1) для
индуктивности 
2) для
ёмкости 
3) для
нагрузки ![]()
Принципиальная схема фильтра:

Определим номинальные
значения элементов по формулам:
Результаты данного расчёта сведены в
таблицу:
|
|
|
|
|
|
|
|
|
значение |
165.012 |
5.652 |
251.6 |
5.101 |
207.626 |
8.221 |
|
|
|
|
|
|
|
|
|
значение |
3.198 |
93.371 |
2.097 |
103.451 |
2.542 |
64.192 |
Произведём расчёт ослабления фильтра и построим характеристику затухания.
![]()
где
- полином Чебышева,
Возьмём в качестве текущей частоты несколько значений и сведём результаты в таблицу
|
|
|
6000 8000 |
10000 4800 |
12000 4000 |
|||||
|
|
0 |
-1 |
1 |
2.6 |
-2.6 |
4 |
-4 |
||
|
|
0 |
1.2 |
72.884 |
96.544 |
|||||
Частотная характеристика затухания:

|
2s6+0.868s5+3.377s4+1.109s3+1.452s2+0.279s+0.095 |
0.868s5+0.377s4+1.109s3+0.326s2+0.279s+0.033 |
|
2s6+0.868s5+2.555s4+0.751s3+0.623s2+0.76s |
2.304s (z1) |
|
0.822s4+0.358s3+0.829s2+0.203s+0.095 |
|
0.868s5+0.377s4+1.109s3+0.326s2+0.279s+0.033 |
0.822s4+0.358s3+0.829s2+0.203s+0.095 |
|
0.868s5+0.377s4+0.875s3+0.214s2+0.1s |
1.056s (y2) |
|
0.234s3+0.112s2+0.179s+0.033 |
|
0.822s4+0.358s3+0.829s2+0.203s+0.095 |
0.234s3+0.112s2+0.179s+0.033 |
|
|
0.822s4+0.358s3+0.629s2+0.116s |
3.513s (z3) |
|
|
0.2s2 + 0.087s+0.095 |
||
|
0.234s3+0.112s2+0.179s+0.033 |
0.2s2+0.087s+0.095 |
|
0.234s3+0.112s2+0.111s |
1.17s (y4) |
|
0.069s+0.033 |
|
0.2s2+0.087s+0.095 |
0.069s+0.033 |
|
0.2s2+0.087s |
2.889s (z5) |
|
0.095 |
|
0.069s+0.033 |
0.095 |
|
0.069s |
0.726s (y4) |
|
0.033 |
|
0.095 |
0.033 |
|
0.095 |
3 (r) |
|
0 |

Общий вид частотной характеристики затухания:

Полоса задержки фильтра:
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.