Задание №1.25 Покажем, что для любого существует такой номер , что для всех . Из последнего неравенства следует, что можно выбрать (квадратные скобки означают целую часть) и при любых будет выполняться неравенство . Значит, по определению предела последовательности . |
Задание №1.26 Покажем, что для любого существует такой номер , что для всех . Из последнего неравенства следует, что можно выбрать (квадратные скобки означают целую часть) и при любых будет выполняться неравенство . Значит, по определению предела последовательности . |
Задание №1.27 Покажем, что для любого существует такой номер , что для всех . Из последнего неравенства следует, что можно выбрать (квадратные скобки означают целую часть) и при любых будет выполняться неравенство . Значит, по определению предела последовательности . |
Задание №1.28 Покажем, что для любого существует такой номер , что для всех . Из последнего неравенства следует, что можно выбрать (квадратные скобки означают целую часть) и при любых будет выполняться неравенство . Значит, по определению предела последовательности . |
Задание №1.29 Покажем, что для любого существует такой номер , что для всех . Из последнего неравенства следует, что можно выбрать (квадратные скобки означают целую часть) и при любых будет выполняться неравенство . Значит, по определению предела последовательности . |
Задание №1.30 Покажем, что для любого существует такой номер , что для всех . Из последнего неравенства следует, что можно выбрать (квадратные скобки означают целую часть) и при любых будет выполняться неравенство . Значит, по определению предела последовательности . |
Задание №1.31 Покажем, что для любого существует такой номер , что для всех . Из последнего неравенства следует, что можно выбрать (квадратные скобки означают целую часть) и при любых будет выполняться неравенство . Значит, по определению предела последовательности . |
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.