Заготовки для математических задач (Пределы), страница 4

Задание №1.19

Покажем, что для любого  существует такой номер , что  для всех .

Из последнего неравенства следует, что можно выбрать  (квадратные скобки означают целую часть) и при любых  будет выполняться неравенство . Значит, по определению предела последовательности

.

Задание №1.20

Покажем, что для любого  существует такой номер , что  для всех .

Из последнего неравенства следует, что можно выбрать  (квадратные скобки означают целую часть) и при любых  будет выполняться неравенство . Значит, по определению предела последовательности

.

Задание №1.21

Покажем, что для любого  существует такой номер , что  для всех .

Из последнего неравенства следует, что можно выбрать  (квадратные скобки означают целую часть) и при любых  будет выполняться неравенство . Значит, по определению предела последовательности

.

Задание №1.22

Покажем, что для любого  существует такой номер , что  для всех .

Из последнего неравенства следует, что можно выбрать  (квадратные скобки означают целую часть) и при любых  будет выполняться неравенство . Значит, по определению предела последовательности

.

Задание №1.23

Покажем, что для любого  существует такой номер , что  для всех .

Из последнего неравенства следует, что можно выбрать  (квадратные скобки означают целую часть) и при любых  будет выполняться неравенство . Значит, по определению предела последовательности

.

Задание №1.24

Покажем, что для любого  существует такой номер , что  для всех .

Из последнего неравенства следует, что можно выбрать  (квадратные скобки означают целую часть) и при любых  будет выполняться неравенство . Значит, по определению предела последовательности

.