Виконаємо дії по перевірці гіпотез.
Hypothesis Tests for X3
Sample mean = 12,07
Sample median = 12,0
t-test
------
Null hypothesis: mean = 12,07
Alternative: less than
Computed t statistic = 0,0
P-Value = 0,5
Do not reject the null hypothesis for alpha = 0,05.
sign test
---------
Null hypothesis: median = 12,07
Alternative: less than
Number of values below hypothesized median: 56
Number of values above hypothesized median: 44
Large sample test statistic = 1,1 (continuity correction applied)
Probability Distributions
Inverse CDF
-----------
Distribution: Student's t
CDF Dist. 1 Dist. 2 Dist. 3 Dist. 4 Dist. 5
0,975 1,98422
0,95 1,66039
The StatAdvisor
---------------
This pane finds critical values for the Student's t distribution.
You may specify up to 5 five tail areas. The critical value is
defined as the largest value for the Student's t distribution such
that the probability of not exceeding that value does not exceed the
area specified. For example, the output indicates that, for the first
distribution specified, 1,98422 is the largest value such that the
probability of not exceeding 1,98422 is less than or equal to 0,975.
Перевіряємо статичні гіпотези за допомогою пакету Statgraphics для 1 і 2 виборки:
Summary Statistics
X1 X2
------------------------------------------------------------
Count 50 75
Average 10,34 11,9067
Median 8,0 12,0
Mode 3,0
Geometric mean 7,2956 8,61484
Variance 69,3718 63,0858
Standard deviation 8,32898 7,94265
Standard error 1,1779 0,917139
Minimum 1,0 1,0
Maximum 30,0 30,0
Range 29,0 29,0
Lower quartile 4,0 5,0
Upper quartile 15,0 17,0
Interquartile range 11,0 12,0
Skewness 1,08537 0,424386
Stnd. skewness 3,13319 1,50043
Kurtosis 0,296347 -0,7101
Stnd. kurtosis 0,427739 -1,25529
Coeff. of variation 80,551% 66,7076%
Sum 517,0 893,0
------------------------------------------------------------
Comparison of Means
-------------------
95,0% confidence interval for mean of X1: 10,34 +/- 2,36707 [7,97293,12,7071]
95,0% confidence interval for mean of X2: 11,9067 +/- 1,82744 [10,0792,13,7341]
95,0% confidence interval for the difference between the means
assuming equal variances: -1,56667 +/- 2,92685 [-4,49352,1,36019]
t test to compare means
Null hypothesis: mean1 = mean2
Alt. hypothesis: mean1 NE mean2
assuming equal variances: t = -1,05954 P-value = 0,291429
Comparison of Standard Deviations
---------------------------------
X1 X2
------------------------------------------------------------
Standard deviation 8,32898 7,94265
Variance 69,3718 63,0858
Df 49 74
Ratio of Variances = 1,09964
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.