,
где , – соответственно максимальная и минимальная из дисперсий эталонного и программируемого случайных процессов.
Вычисленное значение F сравнивалось с табличным, Fтабл , при данном для каждой дисперсии числе степеней свободы и избранном уровне значимости риска. Число степеней свободы для дисперсии D0 принималось равно бесконечности, а для принималось равным длине массива в задаче моделирования. Во всех случаях имитационного моделирования F < Fтабл, следовательно, различие между дисперсиями эталонного и моделируемого случайных процессов можно считать несущественным.
Таким образом, основные метрологические характеристики переходных процесса в робастной системе разбиваются на две группы:
1. Метрологические характеристики информационно-измерительной подсистемы, основное назначение которых - это обеспечение заданной точности измерения всех параметров робастной системы [64];
2. Метрологические характеристики управляющей подсистемы, основное назначение которых является количественная оценка потерь образующихся в процессе управления (см. глава 3); следует считать, что именно период управления, ТУ, связывает метрологические характеристики модулей УСО в робастной системе в единые количественные оценки качества как алгоритмов текущей идентификации, так и алгоритмов визуализации процессов измерения и управления.
4.1 Метрологические характеристики измерительной подсистемы
Согласно схеме выделения случайной функции ошибки цифровой обработки измерительной информации (см. рис. 4.5 и [7, 58, 64]) фактический эффект воздействия информационного дискретно-непрерывного канала на исходный непрерывный случайный процесс естественно рассматривать по отношению к результату применения желаемой непрерывной линейной операции (передачи, фильтрации) к исходному непрерывному сигналу. Реализация соответствующей случайной функции ошибки (рис. 4.5) может быть представлена в виде:
,
где и – частные реализации выходного сигнала реального дискретно-непрерывного и эталонного каналов. Для наиболее часто встречаемых, в технических системах, допущений о нормальности и стационарности (по крайней мере, в широком смысле) исходного измеряемого сигнала, в силу линейности его преобразований в функции и , случайная функция ошибки также является нормальной и стационарной. Стационарность случайной функции ошибки по математическому ожиданию следует непосредственно из стационарности по математическому ожиданию исходного процесса [7, 20, 34]: . Предполагая весовую функцию эталонного канала нормированной: и используя равенство , получаем:
.
Рис. 4.5 Схема выделения случайной функции ошибки (ИМ – импульсный модулятор, ЦФ – программный фильтр; ВЭ – восстанавливающий элемент).
Если все вероятностные свойства случайной функции определены, то известна корреляционная функция ошибки [Ш]:
. (4.13)
Отсюда, в частности, с учетом соотношения для дисперсии ошибки имеем [64]:
. (4.14)
Корреляционную функцию ошибки Кε(τ) можно представить также через соответствующие характеристики в частотной области [58]:
. (4.15)
Отсюда дисперсия ошибки определяется выражением:
. (4.16)
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.