Изучение плоской системы сходящихся сил

Страницы работы

4 страницы (Word-файл)

Содержание работы

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра «ТиКМС»

ЛАБОРАТОРНАЯ РАБОТА №3

ИЗУЧЕНИЕ ПЛОСКОЙ СИСТЕМЫ СХОДЯЩИХСЯ СИЛ

    Выполнили:

 ст-ты гр. Р56-2

 Р.А. Матюшев

М.А. Метелев

Т.В.Мыслявцева

    Проверил:

    Е.Г. Синенко

Красноярск 2008

Цель работы: научиться определять уравновешивающую силу от действия плоской системы сходящихся сил.

Оборудование: лабораторная установка ТМт 01, тарированные грузы.

Краткие теоретические сведения

Y

F2

F3F1

X


        Рис.1

1. Аналитический метод

F1, F2, F3образуют соответственно с осью Ox углы α1, α2, α3.

Условие равновесия плоской системы сходящихся сил:

    R = (Rx2 + Ry2)1/2 = 0

 

    Rx = F1cosα1 + F2cosα2 + F3cosα3 = 0

 

    Ry = F1sinα1 + F2sinα2 + F3sinα3 = 0

Rx = F1cosα1 + F2cosα2 + F3cosα3

 

Ry = F1sinα1 + F2sinα2 + F3sinα3

 

R = (Rx2 + Ry2)1/2

cosφ = |Rx| / R

φ = arccos(|Rx| / R), угол, который образует равнодействующая сила с осью Ох

2. Практический метод

   Y

                F3

                                                                                                F

F2

 



F1

X


R

             Рис. 2

1)  по правилу многоугольника находим равнодействующую сил (F).

2)  измеряем угол, который образуется между осью Ох и вектором F.

3)  путем уравновешивания системы определяем R

4)  путем уравновешивания системы определяем φпр (угол между R и осью Oy)

Практическая часть

1)  α1 = 30 град. (π/6), α2 = 60 град. (π/3), α3 = 140 град. (7π/9)

2)  F1 = 5 Н, F2 = 1 Н, F3 = 2 Н

3)  Rx = F1cosα1 + F2cosα2 + F3cosα3 = 4.3300 + 0.5000 – 1.5300 = 3.3000 Н

4)  Ry = F1sinα1 + F2sinα2 + F3sinα3 = 2.5000 + 0.8660 + 1.2855 = 4.6515 Н

5)  R = (Rx2 + Ry2)1/2 = (10.8900 + 21.6300)1/2 = 5.7000 Н

6)  cosφ = |Rx| / R = 3.3000 / 5.7000 = 0.5700

7)  φ = 54.6 град. (0.3π) отсюда следует что угол φпр теор. = 35.4 град. (0.19π)

8)  φпр = 38.1 град. (0.21π)

9)  Rпр. = 6 H

Погрешность:

δφ = [(φпр – φпр теор.) / φпр теор.] * 100% = 4%

δR = [(Rпр. – R) / R] * 100% = 5%

Вывод: научившись определять уравновешивающую силу от действия плоской системы сходящихся сил, измерили φпр = 38.1 град., Rпр. = 6 H, при этом погрешность составила: δφ = 4%, δR = 5% .

Похожие материалы

Информация о работе