САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
БАЛАКОВСКИЙ ИНСТИТУТ ТЕХНИКИ, ТЕХНОЛОГИИ И УПРАВЛЕНИЯ
ФАКУЛЬТЕТ ИНЖЕНЕРНО-СТРОИТЕЛЬНЫЙ
КАФЕДРА «УПРАВЛЕНИЕ И ИНФОРМАТИКА В ТЕХНИЧЕСКИХ СИСТЕМАХ»
ПРАКТИЧЕСКАЯ РАБОТА №2
по дисциплине «МОТС»
РАЗЛОЖЕНИЕ ФУНКЦИИ В РЯД ФУРЬЕ
Вариант №16
Выполнил: ст.гр. УИТ-32
Чупахина Н.Е.
Принял:
Ефремова Т.А.
2011
Цель работы: приобрести навыки разложения функции в ряд Фурье и определения коэффициентов ряда на различных промежутках.
Задание.
Дана функция .
1) Исследовать функцию на четность.
2) Вычислить первые пять пар коэффициентов разложения в ряд Фурье функции f(t) на отрезке [0;2π].
3) Построить графики пяти гармоник в одной системе координат.
4) Выполнить гармонический синтез функции f(t) по гармоникам. Результаты синтеза отобразить графически.
Решение.
1)
Условие четности выполняется, следовательно, функция является четной.
2) Разложение в ряд Фурье четной функции имеет вид:
Коэффициенты ряда находятся по формуле:
, ,
где , .
3) Построим графики гармоник
|
Рис. 1. Гармоники функции f(t)
4) Выполним гармонический синтез функции f(t) по гармоникам.
|
Рис.2. Синтез функции f(x) по гармоникам
Вывод: в ходе выполнения данной практической работы нами были приобретены навыки по разложению функции в ряд Фурье и определению коэффициентов ряда на различных промежутках. Мы провели гармонический анализ и синтез периодической функции и выяснили, что функция гармонического синтеза F(t) близка к исходной функции f(t) на отрезке [0;2π].
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.