2 Расчетная (моделирующая) программа для проверки основных характеристик цифрового спектроанализатора
Моделирующая программа для проверки основных характеристик цифрового спектроанализатора была выполнена в среде визуального программирования MachCad. Текст программы приведен ниже.
Программа построена следующим образом. В начале задается верхняя частота дискретизации и вычисляется период дискретизации.
Требуемое время накопления вычисляется с учетом определенной в разделе 1 величины нормированной ширины окна и требований по разрешающей способности. Полученной значение и время накопления уточняются с учетом того, что число отсчетов в выборке должно соответствовать значению .
Оконная функция Кайзера-Бесселя задается с использованием встроенных в систему MathCad функций Бесселя первого рода нулевого порядка.
Сигнал задается в виде двух гармонических составляющих с различными частотами, начальными фазами и амплитудами.
Для получения массива отсчетов сигнала значения сигнала в заданный момент времени умножаются на величину оконной функции.
Спектр сигнала вычисляется путем быстрого преобразования Фурье с использованием стандартной функции системы MathCad fft(u), где u – массив отсчетов сигнала. Функция выдает массив комплексных спектральных компонент, поэтому при выборе спектра на график, то есть, получения спектрограммы, используются операции взятия модуля.
Спектральные отсчеты выводятся в нормированном относительно амплитуды наименьшей спектральной компоненты в пределах отображаемого участка частот виде.
Результаты моделирования при приведенных на листинге исходных данных свидетельствуют о правильности разработанной программы. В частности: различия амплитуд сигналов адекватно различию амплитуд соответствующих спектральных компонент; уровень боковых лепестков спектра для сигнала с большей амплитудой составляет около минус 81 дБ, что точно соответствует заданной оконной функции.
Спектрограммы сигналов, фиксируемые цифровым спектроанализатором, приведены на рисунках 1-12. Рисунки 1-4 построены для несущей частоты первой гармонической составляющей f1=FВ/2=2 кГц и частоты второй гармонической составляющей f2=2,5; 2,3; 2,1 и 2,05 кГц. Рисунки 5-8 построены для несущей частоты первой гармонической составляющей f1=4 кГц и частоты второй гармонической составляющей f2=3,5; 3,7; 3,9 и 3,95 кГц. Различие амплитуд первой и второй гармонических составляющих принималось равным предельному значению 78 дБ. На рисунках 9-12 приведены спектрограммы для случая f1=2 кГц, f2=2,1 кГц при разности начальных фаз сигналов 0°; 90°; 180° и 270°.
Анализ полученных спектров позволяет сделать следующие выводы:
при различии амплитуд гармонических составляющих входного сигнала 78 дБ цифровой спектроанализатор обеспечивает реальную разрешающую способность 100 Гц; об этом свидетельствует возможность надежного выявления локального максимума в спектре, соответствующего меньшей по амплитуде гармонической составляющей, на фоне боковых лепестков интенсивной гармонической составляющей вплоть до величины разности несущих частот 100 Гц; при уменьшении разности частот до 50 Гц выделение локального максимума оказывается невозможным;
начальные фазы гармонических составляющих входного сигнала не оказывают заметного влияния на вид спектра и не приводят к изменению величины реальной разрешающей способности; так, при изменении фазы одного (меньшего по амплитуде) колебаний в широких пределах возможность выделения двух спектральных составляющих сохраняется.
Полученные численные результаты подтверждают результаты теоретического обоснования параметров цифрового спектроанализатора и позволяют утверждать, что при различии амплитуд гармонических составляющих 78 дБ его реальная разрешающая способность составит не менее 100 Гц.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.