Анализ конструкций задних подвесок полноприводных автомобилей, страница 9

Рис. 16. Схема противоклевкового действия передней подвески с параллельными рычагами при торможении трансмиссионным тормозом

       Если же главная передача и тормозные механизмы крепятся на несущей системе автомобиля, то реактивные моменты не воздействуют на направляющее устройство подвески. В таких случаях используются иные способы создания «антиклевкового эффекта». Так, При направляющем устройстве на поперечных рычагах с параллельными осями качания, для которых центр крена бесконечно удален, эффективное противодействие наклону кузова может быть достигнуто за счет наклона обоих поперечных рычагов в продольной плоскости в одну сторону. Как видно из схемы, приведенной на рис. 16, тормозная сила Р, приложенная к стойке передней подвески в точке О1 являющейся проекцией на эту стойку центра колеса, вызывает на концах рычагов силы, вертикальные составляющие которых стремятся наклонить эти рычаги вниз. Таким образом, уменьшается деформация упругого элемента подвески и соответствующее опускание передней части автомобиля. Однако основной причиной продольного наклона кузова автомобиля при разгоне и торможении служит момент продольных сил инерции, плечо которых определяется расстоянием А по вертикали от центра масс кузова автомобиля до центра продольного крена кузова О (рис.14). Уменьшая плечо h, то есть путем конструктивных мероприятий приближая центр О к центру масс кузова, можно существенно уменьшить продольный наклон автомобиля.

3.   Необходимые характеристики демпфирования. Гашение колебаний колес и кузова автомобиля, возникших в результате воздействия главным образом, дорожных неровностей, может происходить вследствие трения в некоторых типах упругих элементов и в шарнирах направляющего устройства подвески. Однако трение в этих элементах обычно невелико и нестабильно, а закон его изменения не оптимален. Кроме того, повышенное трение в названных узлах привело бы к их быстрому изнашиванию, старению резины и т.п. Поэтому трение в упругих элементах, направляющих устройствах стремятся свести до минимума и оборудовать подвески отдельными гасящими элементами — амортизаторами, работающими по принципу дросселирования потока жидкости. Характеристики гидравлических амортизаторов достаточно стабильны и при правильном их подборе позволяют удовлетворить целому ряду требований плавности хода и управляемости автомобиля.

4.  Минимальная величина неподрессоренных частей. К неподрессоренным частям автомобиля относятся шины и колеса, колесные тормоза, поворотные кулаки, стойки подвески, мосты (при зависимых подвесках) и т.п. Детали подвески, карданных передач и т.д., которые крепится одним концом к подрессоренным, а другим —к неподрессоренным частям, делятся между этими частями в определенном соотношении. Оценивая взаимодействие подрессоренных и неподрессоренных частей конструкции, следует представить себе автомобиль в виде колебательной системы, состоящей из одной большой массы, опирающейся через упругие и демпфирующие элементы на несколько (по числу колес или мостов) меньших масс. Последние через упругие шины взаимодействуют с профилем дороги. Колеблясь под влиянием дорожных неровностей, неподрессоренные части, с одной стороны, вызывают сложные колебания кузова, а с другой— сохраняют или теряют контакт с дорогой. Чем больше масса неподрессоренной части конструкции, тем большее влияние она оказывает на колебания подрессоренной массы и тем больше вероятность, в силу значительной инерционности, се отрыва от поверхности дороги. В первом случае ухудшается плавность хода автомобиля, а во втором — его управляемость и устойчивость. Поэтому массу неподрессоренных частей стремятся всемерно снижать. Наибольшую массу неподрессоренных частей дает зависимая подвеска ведущих мостов, наименьшую — независимая подвеска ведомых колес.