Потенциальное течение несжимаемой жидкости
Задано:
Обтекание круглого бесконечного цилиндра с r0=0.25 м потоком U0=10 м/с с циркуляцией Г=2 м2/с.
1. Построить графики линий тока и линий равного потенциала течения
Разложим sin в ряд Тейлора:
Тогда с учетом комплексный потенциал течения примет вид
Уравнение линий равного потенциала в декартовой системе координат
Уравнение линий тока в декартовой системе координат
По полученным данным строим линии равного потенциала и линии тока
Рисунок 1.– Линии равного потенциала и линии тока
Определим скорости ; .
Находим давление в любой точке потока несжимаемой жидкости из уравнения Эйлера:
Согласно условию физической реальности необходимо, чтобы ни в одной точке потока не было P<0, т.е. во всех точка потока отсутствовала кавитация:
2. По заданному комплексному потенциалу скоростей обтекания цилиндра с циркуляцией требуется:
1) Определить тип обтекания.
2) Вычислить и построить в масштабе:
а) функцию тока для трех характерных значений произвольных постоянных;
б) распределение окружной составляющей скорости; в) график зависимости коэффициента давления от угла .
3) Рассчитать коэффициент подъемной силы.
Комплексный потенциал имеет вид:
1) Определим критические углы (углы в которых Р=0):
2) a) Выделяя мнимую часть в выражении, получим функцию тока Определим в характерных трех точках:
Рисунок 2.– Линии тока при обтекании цилиндра с циркуляцией б) Определим распределение окружной составляющей скорости на поверхности цилиндра
На основании этой формулы заполним таблицу
0 |
30 |
60 |
90 |
|
-1,274 |
-11,274 |
-18,5945 |
-21,274 |
Рисунок 3. – Распределение окружной составляющей скорости на поверхности цилиндра в) Определим зависимость коэффициента давления от угла
90 |
60 |
30 |
0 |
-30 |
-60 |
-90 |
|
-2,504 |
-1,573 |
0,240 |
0,984 |
-0,272 |
-2,460 |
-3,528 |
Рисунок 4. - Построим график зависимости
3) Определим коэффициент подъемной силы:
4
Расчетно-графическая работа №3
Применение метода Кармана-Польгаузена к расчету
ламинарного пограничного слоя
Задано:
Вычислить по методу Кармана-Польгаузена основные характеристики ламинарного пограничного слоя, сравнить с точным решением при и следующими граничными условиями для выбора профиля:
При , ;
на границе пограничного слоя при
Построить график зависимости , точный и расчетный профили скоростей при заданном значении и для однородного потока () .
Идея метода Кармана-Польгаузена состоит в замене неустойчивого точного распределения скоростей в пограничном слое специально подобранным распределением, удовлетворяющим граничным условиям задачи.
Из заданных граничных условий следует, что полином должен быть третьего порядка
с граничными условиями для функции :
при ;
при f=1, .
Следовательно, для определения коэффициентов получим систему алгебраических уравнений
;
;
.
Приведенная система легко вычисляется с помощью теории определителей, а для коэффициентов следующие выражения:
, , , тогда
, .
Для построения характеристики определим значения коэффициентов , входящих в ее выражение:
;
;
;
;
.
, где и ; тогда
(1)
Т.к. , расчеты необходимо выполнять в области положительных значений . Составим таблицу 3.1, таблица 3.1
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
0 |
0.0575 |
0.1429 |
0.2628 |
0.4104 |
0.5449 |
0.6000 |
0.5503 |
0.4398 |
0.3214 |
0.2203 |
Построим график по ее значениям (рисунок 1)
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.