В реальном случае не все одновременно ограничения на входной сигнал могут иметь место. В этом случае в запретной зоне будет отсутствовать соответствующий участок. А методика построения запретной зоны в целом и отдельных ее фрагментов в частности не претерпит изменения.
ЗАМЕЧАНИЕ. Данная методика может быть использована для построения "разрешенной зоны", ниже которой должна быть расположена желаемая ЛАХ системы. В качестве исходных данных используются gm,, Vm и аm -- предельно допустимые параметры объекта управления, например, двигателя.
2. Запретная зона по точности в системе со стабильными параметрами при ограниченном входном сигнале и наличии возмущений
.
Вне зависимости от характера ограничений на входной сигнал запретная зона строится по методике, описанной в п.1.
При одновременном воздействии задающего и возмущающего входных сигналов ошибка в системе является линейной комбинацией двух составляющих: , причем .
Предполагается, что входной сигнал , причем, при наличии ограничений на скорость изменения и ускорение будет определяться как или соответственно, как показано в п.1.2 и п.1.3. В любом случае гармонический входной сигнал при постоянном возмущении определит и гармонический характер ошибки с той же частотой.
Ошибка в данной системе (ее максимальное установившееся значение) будет определена как:
.
Если коэффициент усиления (постоянный) и требуется, чтобы выполнялось неравенство , то после незначительных преобразований получаем
, что соответствует предельному коэффициенту усиления системы на частоте ω при отработке входного гармонического сигнала с ошибкой .
В зависимости от характера ограничений на входной сигнал можно определить предельный коэффициент усиления и координаты запретной зоны:
№ п/п |
Ограничения на входной сигнал |
Предельный коэффициент усиления |
Ордината запретной зоны |
1 |
, |
||
2 |
, |
||
3 |
, |
Запретная зона системы по точности при наличии постоянных возмущений и ограничений на входное воздействие для общего случая изображена на рисунке:
Точки пересечения продолжения участков запретной зоны оси абсцисс находятся, как и ранее, из условий L2(ω0)=0 иL1(ωС)=0, откуда соответственно получаем: и .
Точки пересечения продолжения участков запретной зоны оси и абсцисс находятся, как и ранее, из условий L2(ω0)=0 иL1(ωС)=0, откуда соответственно получаем:
и .
Точки пересечения продолжения участков запретной зоны и оси ординат находятся из условий 20lgK'a =L1(1), 20lgK'v =L2(1) и 20lgK' =L0(1),откуда получаем , и соответственно.
Точки излома запретной зоны (значения абсцисс и ординат их приведены на рисунке) получены из условий L0(ωЭ1)= L1(ωЭ1) иL1(ωЭ2)= L2ωЭ2).
В реальной системе не все одновременно ограничения на входной сигнал могут иметь место. В этом случае, аналогично п.1.4, в запретной зоне будет отсутствовать соответствующий участок. Методика построения запретной зоны в целом и отдельных ее фрагментов также не претерпит изменений.
Ситуации, когда на входной сигнал наложены ограничения вида , , и , , в настоящем разделе не рассматривались. Они являются частным случаем произвольного входного воздействия при и необходимые значения предельного коэффициента усиления могут быть получены самостоятельно аналогично п.п. 1.1, 1.2, 1.3. Практического значения данные коэффициенты не имеют в силу их совпадения с соответствующими координатами запретной зоны.
3. Учет нестабильности параметров
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.