High Frequency N-P-N Transistor Array. Multifunction Combinations - RF/Mixer/Oscillator. Specifications CA3127

Страницы работы

Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.

Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.

Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.

Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.

Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.

Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.

Фрагмент текста работы

        CA3127

March 1993                                                 High Frequency N-P-N Transistor Array

Features                                                       Description

•  Gain Bandwidth Product (fT). . . . . . . . . . . . . . . . >1GHz The CA3127* consists of five general purpose silicon n-p-n transistors on a common monolithic substrate. Each of the

•  Power Gain. . . . . . . . . . . . . . . . . 30dB (Typ) at 100MHzcompletely isolated transistors exhibits low 1/f noise and a

•  Noise Figure. . . . . . . . . . . . . . . . 3.5dB (Typ) at 100MHz     value of fT in excess of 1GHz, making the CA3127 useful from DC to 500MHz. Access is provided to each of the termi•  Five Independent Transistors on a Common Substrate nals for the individual transistors and a separate substrate connection has been provided for maximum application flexiApplications bility. The monolithic construction of the CA3127 provides close electrical and thermal matching of the five transistors.

•  VHF Amplifiers

*  Formerly Development Number TA6206.

•  Multifunction Combinations - RF/Mixer/Oscillator

•  Sense Amplifiers           Ordering Information

PART NUMBER

TEMPERATURE

RANGE

PACKAGE

CA3127E

-55oC to +125oC

16 Lead Plastic DIP

CA3127F

-55oC to +125oC

16 Lead Ceramic DIP

CA3127M

-55oC to +125oC

16 Lead Narrow Body SOIC

CA3127M96

-55oC to +125oC

16 Lead Narrow Body SOIC*

•  Synchronous Detectors

•  VHF Mixers

•  IF Converter

•  IF Amplifiers

•  Synthesizers

•  Cascade Amplifiers

*  Denotes Tape and Reel.

Pinout

CA3127

(PDIP, CDIP, 150MIL SOIC)

TOP VIEW

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures.   File Number 662.2

Copyright © Harris Corporation 1993

Specifications CA3127

Absolute Maximum Ratings

Operating Conditions

Power Dissipation, PD

Any One Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85mW

Operating Temperature Range . . . . . . . . . . . . . . . . -55oC to +125oC

Storage Temperature Range. . . . . . . . . . . . . . . . . . -65oC to +150oC

Total Package

For TA Up to +75oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425mW

For TA > +75oC . . . . . . . . . . . . . .Derate Linearly at 6.67mW/oC The following ratings apply for each transistor in the device

Collector-to-Emitter Voltage, VCEO . . . . . . . . . . . . . . . . . . . . . 15V Collector-to-Base Voltage, VCBO. . . . . . . . . . . . . . . . . . . . . . . 20V Collector-to-Substrate Voltage, VCIO (Note 1). . . . . . . . . . . . . 20V

Collector Current, IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20mA Junction Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175oC Junction Temperature (Plastic Packages) . . . . . . . . . . . . . . +150oC

Lead Temperature (Soldering 10 Sec.). . . . . . . . . . . . . . . . . +300oC

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications    TA = +25oC

PARAMETERS

TEST CONDITIONS

LIMITS

UNITS

MIN

TYP

MAX

DC SPECIFICATIONS (For Each Transistor)

Collector-to-Base Breakdown Voltage

IC = 10µA, IE = 0

20

32

-

V

Collector-to-Emitter Breakdown Voltage

IC = 1mA, IB = 0

15

24

-

V

Collector-to-Substrate Breakdown-Voltage

IC1 = 10µA, IB = 0, IE = 0

20

60

-

V

Emitter-to-Base Breakdown Voltage (Note 2)

IE = 10µA, IC = 0

4

5.7

-

V

Collector-Cutoff-Current

VCE = 10V IB = 0

-

-

0.5

µA

Collector-Cutoff-Current

VCB = 10V, IE = 0

-

-

40

nA

DC Forward-Current Transfer Ratio

VCE = 6V

IC = 5mA

35

88

-

IC = 1mA

40

90

-

IC = 0.1mA

35

85

-

Base-to-Emitter Voltage

VCE = 6V

IC = 5mA

0.71

0.81

0.91

V

IC = 1mA

0.66

0.76

0.86

V

IC = 0.1mA

0.60

0.70

0.80

V

Collector-to-Emitter Saturation Voltage

IC = 10mA, IB = 1mA

-

0.26

0.50

V

Magnitude of Difference in VBE

Q1 & Q2 Matched VCE = 6V, IC = 1mA

-

0.5

5

mV

Magnitude of Difference in IB

-

0.2

3

µA

SWITCHING SPECIFICATIONS

Noise Figure

f = 100kHz, RS = 500Ω, IC = 1mA

-

2.2

-

dB

Gain-Bandwidth Product

VCE = 6V, IC = 5mA

-

1.15

-

GHz

Collector-to-Base Capacitance

VCB = 6V, f = 1MHz

-

See

Fig. 5

-

pF

Collector-to-Substrate Capacitance

VCI = 6V, f = 1MHz

-

-

pF

Emitter-to-Base Capacitance

VBE = 4V, f = 1MHz

-

-

pF

Voltage Gain

VCE = 6V, f = 10MHz, RL = 1kΩ, IC = 1mA

-

28

-

dB

Power Gain

Cascode Configuration f = 100MHz, V+ = 12V, IC = 1mA

27

30

-

dB

Noise Figure

-

3.5

-

dB

Input Resistance

Common-Emitter Configuration

VCE = 6V, IC = 1mA, f = 200 MHz

-

400

-

Output Resistance

-

4.6

-

kΩ

Input Capacitance

-

3.7

-

pF

Output Capacitance

-

2

-

pF

Magnitude of Forward Transadmittance

-

24

-

mmho

NOTE:

1.  The collector of each transistor of the CA3127 is isolated from the substrate by an integral diode. The substrate (terminal 5) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

2.  When used as a zener for reference voltage, the device must not be subjected to more than 0.1mJ of energy from any possible capacitanceor electrostatic discharge in order to prevent degradation of the junction. Maximum operating zener current should be less than 10mA.

Typical Performance Curves

FIGURE 1. NOISE FIGURE vs COLLECTOR CURRENT AT       FIGURE 2. NOISE FIGURE vs COLLECTOR CURRENT AT RSOURCE = 500Ω     RSOURCE = 1kΩ


0 1 2 3 4 5 6 7 8 9 10

COLLECTOR CURRENT (mA)

FIGURE 3. GAIN-BANDWIDTH PRODUCT vs COLLECTOR CURRENT

0 1 2 3 4 5 6 7 8 9 10

BIAS VOLTAGE (V)

FIGURE 5A. CAPACITANCE vs BIAS VOLTAGE FOR Q2

0.1                                                  1                                                     10

COLLECTOR CURRENT (mA)

FIGURE 4. BASE-TO-EMITTER VOLTAGE vs COLLECTOR CURRENT

TRAN-

SISTOR

CAPACITANCE (pF)

CCB

CCE

CEB

CCI

PKG

TOTAL

PKG

TOTAL

PKG

TOTAL

PKG

TOTAL

BIAS

(V)

-

6V

-

6V

-

4V

-

6V

Q1

0.025

0.190

0.090

0.125

0.365

0.610

0.475

1.65

Q2

0.015

0.170

0.225

0.265

0.130

0.360

0.085

1.35

Q3

0.040

0.200

0.215

0.240

0.360

0.625

0.210

1.40

Q4

0.040

0.190

0.225

0.270

0.365

0.610

0.085

1.25

Q5

0.010

0.165

0.095

0.115

0.140

0.365

0.090

1.35

FIGURE 5B. TYPICAL CAPACITANCE VALUES AT f = 1MHz. THREE TERMINAL MEASUREMENT. GUARD ALL TERMINALS EXCEPT THOSE UNDER TEST.


1                                 10                              100                             1000                           1                                 10                              100 1000

FREQUENCY (MHz)                                                                                                        FREQUENCY (MHz)

FIGURE 6. VOLTAGE GAIN vs FREQUENCY AT RL = 100Ω    FIGURE 7. VOLTAGE GAIN vs FREQUENCY AT RL = 1kΩ


0.1                                                 1.0                                                  10

COLLECTOR CURRENT (mA)

FIGURE 8. DC FORWARD-CURRENT TRANSFER RATIO (hFE) vs COLLECTOR CURRENT

100                                                                                               1000

FREQUENCY (MHz)

FIGURE 9. INPUT ADMITTANCE (Y11) vs FREQUENCY


0 1 2 3 4 5 6 7 8 9 10

COLLECTOR CURRENT (mA)

FIGURE 10. INPUT ADMITTANCE (Y11) vs COLLECTOR CURRENT


FIGURE 11. OUTPUT ADMITTANCE (Y22) vs FREQUENCY


0 1 2 3 4 5 6 7 8 9 10 11 12 COLLECTOR CURRENT (mA)


FIGURE 12. OUTPUT ADMITTANCE (Y22) vs COLLECTOR CURRENT


0 1 2 3 4 5 6 7 8 9 1011 12

COLLECTOR CURRENT (mA)

FIGURE 13. FORWARD TRANSADMITTANCE (Y21) vs COLLECTOR CURRENT


100 150 200                                                            1000

FREQUENCY (MHz)

FIGURE 14. FORWARD TRANSADMITTANCE (Y21) vs FREQUENCY

0 1 2 3 4 5 6 7 8 9 10 11 12

COLLECTOR CURRENT (mA)

FIGURE 15. REVERSE TRANSADMITTANCE (Y12) vs COLLECTOR CURRENT


V+


FIGURE 16. REVERSE TRANSADMITTANCE (Y12) vs         FIGURE 17. VOLTAGE-GAIN TEST CIRCUIT USING CURRENTFREQUENCY         MIRROR BIASING

Похожие материалы

Информация о работе

Предмет:
КР приемники
Тип:
Курсовые работы
Размер файла:
61 Kb
Скачали:
0

Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.

Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.

Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.

Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.

Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.

Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.