Для увеличения значения h21 соединяют биполярные транзисторы по схеме Дарлингтона:
В составном транзисторе, имеющем характеристики, как одного, база VT1 соединена с эмиттером VT2 и ΔIэ2 = ΔIб1. Коллекторы обоих транзисторов соединены и этот вывод является выводом составного транзистора. База VT2 играет роль базы составного транзистора ΔIб = ΔIб2, а эмиттер VT1 – роль эмиттера составного транзистора ΔIэ = ΔI1.
Получим выражение для коэффициента усиления по току β для схемы Дарлингтона. Выразим связь между изменением тока базы dIб и вызванным вследствие этого изменением тока коллектора dIк составного транзистора следующим образом:
Поскольку для биполярных транзисторов коэффициент усиления по току обычно составляет несколько десятков (β1, β2 >> 1), то суммарный коэффициент усиления составного транзистора будет определяться произведением коэффициентов усиления каждого из транзисторов βΣ = β1 · β2 и может быть достаточно большим по величине.
Отметим особенности режима работы таких транзисторов. Поскольку эмиттерный ток VT2 Iэ2 является базовым током VT1 dIб1, то, следовательно, транзистор VT2 должен работать в микромощном режиме, а транзистор VT1 – в режиме большой инжекции, их эмиттерные токи отличаются на 1-2 порядка. При таком неоптимальном выборе рабочих характеристик биполярных транзисторов VT1 и VT2 не удается в каждом из них достичь высоких значений усиления по току. Тем не менее даже при значениях коэффициентов усиления β1, β2 ≈ 30 суммарный коэффициент усиления βΣ составит βΣ ≈ 1000.
Высокие значения коэффициента усиления в составных транзисторах реализуются только в статистическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ, наоборот, и граничная частота усиления по току, и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1, VT2 в отдельности.
Наверх
Процесс распространения инжектированных в базу неосновных носителей заряда от эмиттерного до коллекторного перехода идет диффузионным путем. Этот процесс достаточно медленный, и инжектированные из эмиттера носители достигнут коллектора не ранее чем за время диффузии носителей через базу. Такое запаздывание приведет к сдвигу фаз между током Iэ и током Iк. При низких частотах фазы токов Iэ, Iк и Iб совпадают.
Частота входного сигнала, при которой модуль коэффициента усиления уменьшается в раз по сравнению со статическим значением β0, называется предельной частотой усиления по току биполярного транзистора в схеме с общим эмиттером
fβ – предельная частота (частота среза) fгр – граничная частота (частота единичного усиления)
Наверх
Полевые, или униполярные, транзисторы в качестве основного физического принципа используют эффект поля. В отличие от биполярных транзисторов, у которых оба типа носителей, как основные, так и неосновные, являются ответственными за транзисторный эффект, в полевых транзисторах для реализации транзисторного эффекта применяется только один тип носителей. По этой причине полевые транзисторы называют униполярными. В зависимости от условий реализации эффекта поля полевые транзисторы делятся на два класса: полевые транзисторы с изолированным затвором и полевые транзисторы с управляющим p-n переходом.
Наверх
Схематически полевой транзистор с управляющим p-n переходом можно представить в виде пластины, к торцам которой подключены электроды, исток и сток. На рис. показана структура и схема включения полевого транзистора с каналом n-типа:
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.