Ответ : |
Решение: 1. Выполним преобразование по Лапласу: 2. Передаточные функции – это отношение выходной величины к входной при нулевых начальных условиях 3. Для определения этого отношения преобразуем уравнение: Разделим две части уравнения на Тогда
|
15.
Задание № 15
Задание Уравнение, которое описывает работу тахогенератора (рис.1) имеет вид: , Рис.1 де U – напряжение на выходе тахогенератора (выходная переменная), α – угол поворота вала тахогенератора (входная переменная), К – коэффициент пропорциональности. Определить передаточную функцию тахогенератора. |
Ответ : |
Решение:
, Тогда
|
16.
Задание № 16
Задание: Работа гидравлического исполнительного элемента вращательного движения описывается уравнением: , где ω – угловая скорость вращения вала (выходная переменная), p – давление на входе (входная переменная), К – коэффициент пропорциональности, Т – постоянная времени. Определить передаточную функцию. |
Ответ : |
Решение: Применим преобразование Лапласа:
Передаточная функция определяется как:Найдем эти отношения из уравнения:, Тогда
|
17.
Задание № 17
Задание: Гидравлический исполнительный элемент постепенного действия с механической обратной связью описывается уравнением , , где V – скорость движения потока (выходная величина), h – перемещение золотника (входная величина), К, а – коэффициенты. Определить передаточную функцию элемента. |
Ответ : |
Решение: 1.Применим преобразование Лапласа. 2.Найдем передаточную функцию как отношение выходной величины к входной. Для этого преобразуем уравнение и найдем отношение Откуда
|
18.
Задание № 18
Задание: Уравнение, которое описывает работу элемента САУ, имеет вид, где у – выходная величина, х – входная величина. Определить передаточную функцию. |
Ответ : |
Решение: Передаточная функция – это отношение выходной величины к входной величине, преобразуемых по Лапласу, и при нулевых начальных условиях. Применим преобразование Лапласа к выходному уравнению.Найдем отношение , для этого вынесем за скобки в левой части уравнения и разделим две части на Тогда
|
19.
Задание № 19
Задание: Дано дифференциальное уравнение, описывающее с некоторыми допущениями работу двигателя постоянного тока (рис.1). Рис.1 При этом входной величиной является напряжение U, а выходной - частота вращения вала. Необходимо определить передаточную функцию. |
Ответ : |
Решение: Для получения передаточной функции дифференциального уравнения применим к нему преобразование по Лапласу. Уравнение примет вид Передаточная функция определяется как соотношение исходной величины к входной при нулевых начальных условиях, т.е.. Для ее нахождения преобразуем уравнения и найдем указанные соотношения: , отсюда . Таким образом, . |
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.