Санкт-Петербургский Государственный Университет Информационных Технологий Механики и Оптики
Кафедра Систем Управления и Информатики
Лабораторная работа №2
«Фазовые портреты нелинейных систем и особенности нелинейной динамики»
Выполнил: Годгильдиев А,
Пронин В.
группа 4145
Проверил: Пыркин А.А
Санкт-Петербург
2008
Цель работы: Исследовать системы 2-го порядка, содержащие объект управления

и линейный регулятор
, где
- коэффициенты обратных связей.
1. ![]()
Характеристический полином: ![]()
![]()
а) Корни характеристического полинома:

Система принимает вид:

Фазовый портрет:

Положение равновесия: (0;0)
Асимптотическая устойчивость; тип переходного процесса – колебательный.
б) Корни характеристического полинома:

![]()
Система принимает вид:

Фазовый портрет:

Положение равновесия: (0;0)
Асимптотическая устойчивость; тип переходного процесса – колебательный.
в) Корни характеристического полинома:

![]()
Система принимает вид:

Фазовый портрет:

Положение равновесия: (0;0)
Устойчива по Ляпунову; тип переходного процесса – незатухающий.
2. Исследовать две гладкие нелинейные системы, для которых
![]()
![]()
а)
![]()
1) Корни характеристического полинома:

Система принимает вид:

Фазовый портрет:

Векторное поле:

Положения равновесия:
, к
– целое.
Вид переходного процесса – апериодический, затухающий, соответствует асимптотически устойчивой системе.
- точечные аттракторы,
образующие инвариантное множество.
2) Корни характеристического полинома:

![]()
Система принимает вид:

Фазовый портрет:

Векторное поле:

Положения равновесия:
, к
– целое.
Вид переходного процесса – колебательный, затухающий, соответствует асимптотически устойчивой системе.
- точечные аттракторы,
образующие инвариантное множество.
3) Корни характеристического полинома:

![]()
Система принимает вид:

Фазовый портрет:

Векторное поле:

Положения равновесия:
, к
– целое.
Вид переходного процесса – колебательный, незатухающий, соответствует системе на колебательной границе устойчивости.
б) ![]()
1) Корни характеристического полинома:

Система принимает вид:

Фазовый портрет:

Векторное поле:

Положение равновесия:
.
Вид переходного процесса – апериодический, затухающий, соответствует асимптотически устойчивой системе.
Аттракторами являются точка
и вся область
.
2) Корни характеристического полинома:

![]()
Система принимает вид:

Фазовый портрет:

Векторное поле:

Положение равновесия:
.
Вид переходного процесса – колебательный, затухающий, соответствует асимптотически устойчивой системе.
Аттракторами являются точка
и вся область
.
3) Корни характеристического полинома:

![]()
Система принимает вид:

Фазовый портрет:

Векторное поле:

Положение равновесия:
.
Вид переходного процесса – колебательный, незатухающий, соответствует системе на колебательной границе устойчивости.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.