Спектральный анализ сигналов. Определение спектральной плотности сигнала. Дискретизация непрерывных сигналов

Страницы работы

Содержание работы

Министерство образования Российской Федерации

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра теоретических основ радиотехники (ТОР)

РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ

РГЗ № 2

СПЕКТРАЛЬНЫЙ АНАЛИЗ СИГНАЛОВ

ДИСКРЕТИЗАЦИЯ НЕПРЕРЫВНЫХ СИГНАЛОВ

Вариант: 0

Подвариант: 6

Факультет:            РЭФ

Группа:                 РТ5-91

Студент:               Чебанов А.В.

Преподаватель:   Яковлев А. Н.

Новосибирск 2011

Дано:

Безымянный.jpg

сигн.jpg

Построим график производной заданного сигнала:

2.jpg

сигн1.jpg

Спектр дифферинцированного сигнала будет равен:

диф.jpg

Исходя из теоремы о спектре производной от сигнала:

наш.jpg

наш1.jpg

Запишем выражения для фазового спектра:

Спектральная диаграмма модуля

диаг.jpg

Диаграмма фазы

Диаграмма энергетического спектра:

диаг1.jpg

1.jpg

Ширину лепестка сигнала определяем по спектральной диаграмме модуля .

3.jpg

Так как сигнал четный, следовательно, коэффициенты bn=0.

Найдем коэффициенты an:

 

 

Найдем коэффициенты An:

Запишем выражение для фазы периодического сигнала:

спектральная диаграмма тригонометрического ряда Фурье для периодического сигнала


диаграмма фазы периодического сигнала

Запишем выражение для коэффициентов комплексного ряда Фурье

     

Выражение для фазы комплексного ряда Фурье периодического сигнала:

Спектральная диаграмма коэффициентов

Спектральная диаграмма фазы

Запишем заданный сигнал S(t) с помошью функций Хевисайда:

         интервал дискретизации

спектральная плотность дискретизированного сигнала

ЛИТЕРАТУРА

1. Радиотехнические цепи и сигналы. Задачи и задания. Учеб. пособие /  Коллектив авторов;  под ред. проф. А.Н. Яковлева. – М.: ИНФРА-М;   Новосибирск: Изд-во НГТУ, 2003. – 348 с. (Серия «Высшее образование»).  

2. Конспект лекций по курсу РТЦиС .

Похожие материалы

Информация о работе

Тип:
Расчетно-графические работы
Размер файла:
857 Kb
Скачали:
0