Элементы синтеза линейных стационарных цепей, страница 2

Для чебышевских фильтров, нагруженных с двух сторон и имеющих характеристики вида рис. 15.2, б при условии, что  и , а  задано в децибелах, величины элементов могут быть рассчитаны следующим образом. Сначала определяются вспомогательные параметры по формулам:

; ;

, ,

, ,

затем находят величины элементов

;

;

С помощью прототипа ФНЧ можно рассчитать полоснопропускающие фильтры (ППФ), структуры которых показаны на рис. 15.3.

Рис. 15.3

Переход от структур прототипов ФНЧ рис. 15.1, а, б к соответствующим ППФ рис. 15.3, а, б выполняют с помощью частотного преобразования

.

Полосу пропускания и ее среднюю частоту определяют из выражений

; .

Параметры последовательных и параллельных резонаторов рассчитывают по формулам

 – для параллельных резонаторов;

 – для последовательных резонаторов.

В этих выражениях  – значения параметров элементов прототипа, а частоты , ,  показаны на характеристике ППФ (см. рис. 15.2, в).

Переход от прототипа ФНЧ к структуре фильтра верхних частот (ФВЧ) (рис. 15.4) происходит с помощью частотного преобразования

,

здесь  – частота среза (см. рис. 15.2, г).

Рис. 15.4

При этом расчет параметров элементов ФВЧ производится по формулам:

;

;

.


15.3.  Задачи

15.3.1. Синтез двухполюсников

1. Осуществите реализацию двухполюсника по Фостеру в виде последовательного соединения элементов по заданной функции входного сопротивления

.

2. Реализуйте функцию  предыдущей задачи по второй форме Фостера в виде параллельного соединения проводимостей.

3. Получите различные варианты реализации по Кауэру двухполюсника, обладающего входным сопротивлением задачи 1.

4. Реализуйте в виде лестничной цепи Кауэра двухполюсник с входным сопротивлением

.

5. Определите, может ли данное выражение быть функцией входного сопротивления некоторой электрической цепи:

а) ;                       б) ;

в) ;                             г) ;

д) ;                  е) ;

ж) .

15.3.2. Синтез четырехполюсников

6. Рассчитайте параметры элементов ФНЧ с максимально плоской характеристикой затухания, с числом элементов цепи  и


частотой среза рад/с и внутренним сопротивлением генератора  Ом.

7. Определите величину затухания ФНЧ (задача 6) на частоте Гц.

8. Определите порядок ФНЧ с плоской характеристикой и частотой среза рад/с, имеющего затухание не менее 30 дБ на частоте рад/с.

9. Докажите, что при одинаковых исходных данных фильтры с чебышевской характеристикой имеют большее затухание за полосой пропускания по сравнению с фильтрами, имеющими плоскую характеристику затухания.

10. Сколько элементовов должен иметь ФВЧ с чебышевской характеристикой затухания  дБ и частотой среза  рад/с, чтобы обеспечить затухание  дБ на частоте рад/с?

11. Сколько резонаторов должен содержать ППФ с максимально плоской характеристикой затухания, рад/с, рад/с, чтобы обеспечить затухание на частоте рад/с не менее 20 дБ?

12. Чему равна мощность в нагрузке фильтра, если амплитуда эдс генератора на входе  В, внутреннее сопротивление генератора  Ом, а затухание фильтра  дБ?

15.4. Контрольное задание. Синтез четырехполюсника

По исходным данным, приведенным в табл. 15.1 и 15.2, произвести синтез четырехполюсника (фильтра) на основе фильтра-прототипа НЧ. Осуществить расчет параметров фильтра.

Таблица 15.1

Номер варианта

0

1

2

3

4

5

6

7

8

9

Тип фильтра

ФНЧ

ФНЧ

ФВЧ

ФВЧ

ФВЧ

ППФ

ППФ

ППФ

ППФ

ППФ


Таблица 15.2

Номер подварианта

Исходные данные фильтра

, дБ

, кГц

, кГц

 Ом

Аппроксимация

0

4

0,1

10

12,5

50

Чебышева

1

4

0,2

20

25

75

Чебышева

2

5

3.0

30

35

50

Баттерворта

3

5

0,5

40

45

75

Чебышева

4

6

3.0

50

60

75

Баттерворта

5

6

1,0

60

70

50

Чебышева

6

7

3.0

80

100

50

Баттерворта

7

7

1,0

100

120

75

Чебышева

8

8

3.0

150

200

50

Баттерворта

9

8

2.0

200

250

75

Чебышева