Решение дифференциального уравнения находим как сумму составляющей установившегося режима и свободной составляющей :
.
Составляющая установившегося режима определяется видом заданной функции , и для случая заряда катушки имеет вид , а для случая разряда .
Постоянная интегрирования определяется из начальных условий. Для случая заряда катушки: , а для случая разряда катушки: .
Таким образом, при включении катушки индуктивности последовательно с источником постоянного напряжения переходной процесс описывается функциями:
При включении катушки индуктивности с запасенной энергией последовательно с сопротивлением переходной процесс описывается функциями:
При этом энергия, выделяемая на сопротивлении при разряде, равна энергии, запасенной в магнитном поле катушки индуктивности:
.
Зависимости мощности, выделяемой на катушке индуктивности, и запасаемой энергии от времени при включении последовательно с источником постоянного напряжения выглядят так:
На Рис.2 построены графики теоретических зависимостей соответственно мощности и энергии от времени при включении катушки последовательно с источником постоянного напряжения.
Рис. 3 Графики теоретических зависимостей выделяемой мощности и запасаемой энергии в катушке
При заряде катушки постоянна времени переходного процесса равна:
А при разряде катушки постоянная времени равна:
Следовательно, переходной процесс разряда катушки идет в два раза быстрее, чем процесс заряда, что хорошо видно на Рис.4 и Рис.5 а так же Рис.6 и Рис.7, на которых представлены осциллограммы колебаний тока цепи и напряжения на катушке а так же мощности катушки и энергии.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.