Интегралы, зависящие от параметров
Рассмотрим ф-цию 2-х переменных f(x,y) которая
определена для ![]()
И пусть для
ф-ция
f интегрируема
на отрезке [a,b] в собств.
Смысле (или несобств) Тогда
(1) будет ф-цией
параметра у.
Если 1) для ф-ций F(x,y) при
конечная предельная ф-я
![]()
2) ![]()
то в этом случае можно сказать,
что ф-я f(x,y) стремится к
предельной ф-и
равномерно отн-но Х
ТЕОРЕМА 1: Если f(x,y) при
постоянном у интегрируема по х на [a,b] и при
стремится к
равномерно
по Х, то имеет место равенство 
Д-ВО: Оценим
В
силу усл-я 2) из определения
ТЕОРЕМА 2: Если ф-я f(x,y) опред и дифф как ф-я 2-х переменных на прямоугольнике [a,b;c,d]=[a,b]x[c,d] то интеграл (1) будет непрер ф-ей от у на [c,d].
Д-ВО: из определения равномерной непрерывности + Теорема 1
Правило Лейбница : Пусть сущ-ет
производная по у ф-и f(x,y) тогда
вычисление
происходит след образом
(5)
ДИФФЕРЕНЦИРОВАНИЕ ПОД ЗНАКОМ ИНТЕГРАЛА
ТЕОРЕМА 3: Пусть f(x,y) опред в
прямоугольнике [a,b;c,d] и непрер по
х на [a,b] при
постоянном у из [c,d]. Пусть во
всей области
непрер как ф-я 2-х переменных.
Тогда
у
[c,d] имеет место
ф-ла (5)
Д-ВО: Рассм.
-
зависит от параметра h. Затем доказываем возможность предельного
перехода под знаком интеграла с помощью т.Лагранжа
ИНТЕГРИРОВАНИЕ ПОД ЗНАКОМ ИНТЕГРАЛА
ТЕОРЕМА 4: Если ф-я f(x,y) - непрер
ф-я 2-х переменных в прямоугольнике [a,b;c,d] то имеет
место ф-ла 
Д-ВО: доказываем вспомог. Рав-во
Вычисляем произв обеих частей рав-ва по
и применяем к правой части правило
Лейбница. Получаем одно и тоже.
(8)
ТЕОРЕМА 5: Пусть f(x,y) опред и
непр в прямоугольнике [a,b;c,d], а кривые
при
непрер
и не выходят за пределы отрезков [c,d] и [a,b].
Тогда
Д-ВО: (8)=
(9). Первый равен искомому
выражению, а остальные доказываем, что при
стремятся
к нулю.
ТЕОРЕМА 6: Если кроме
условий теоремы 5 для ф-и f(x,y) выполняется
след - т.е. у нее
произв по у т.е.
определ в [a,b;c,d] а у ф-и
и
также
сущ произв
' и
’ тогда
интеграл (8) можно придифф по параметру у и эта производная будет равна
(10) 
Д-ВО: воспользуемся соотношением
(9). 1-ый интеграл(пределы постоянны) по теор3 его производная равна
.Для второго и третьего по теореме о
среднем и переходя к пределу чтд.
(1)
Условие
равномерной сходимости: Для того , чтобы интеграл (1) сх-ся равномерно от-но y
в области Y ![]()
ПЕРВЫЙ ПРИЗНАК СХОДИМОСТИ
Пусть
интегрируема по х в каждом
конечном промежутке [a,b] если
такая ф-я
интегрируемая в беск промежутке от А до +
что для любого
выполняется
след нер-во:
то интеграл (1) сходится.
Д-ВО: по св-вам мажоранты
ВТОРОЙ ПРИЗНАК СХОДИМОСТИ
Рассм.
(3) .f(x,y)
интегр. По x
[a,b], a g(x,y) – монотонна по Х, если интеграл (1) сх-ся равн. От-но
у, а ф-я
< L равномерно
ограничена, то интеграл (3) сх-ся равномерно в области Y
ТРЕТИЙ ПРИЗНАК СХОДИМОСТИ
Если
будет равном ограничен 
, а ф-я g(x,y)
при
равномерно
отн-но у тогда интеграл (3) сх-ся равномерно от-но у
ЧЕТВЕРТЫЙ ПРИЗНАК СХОДИМОСТИ
(4)
Если несобств интеграл
сх-ся, а g(x,y)
монотонна по х и равномерно ограничено, то интеграл (4) сх-ся равномерно.
НЕОБХОДИМОЕ И ДОСТАТОЧНОЕ УСЛОВИЕ РАВН СХ-СТИ

(1)
ТЕОРЕМА
1: пусть f(x,y) интегрируема в собств смысле на [
] при
и в
каждом таком промежутке при
f(x,y)
равномерно стремится к ф-и
. Если
сх-ся равномерно при x=b, то
имеет место соотн-е 
Д-ВО: по перестановке предельных переходов.
ТЕОРЕМА
2: Русть f(x,y) опред и дифф как ф-я 2-х переменных для
y![]()
Если
интеграл (1)
сх-ся равном, то этот интеграл
есть ф-я непрерыв на данном отрезке по у
Д-ВО: аналог д-ву для собств интегралов
ТЕОРЕМА
3: Пусть выполнены условия теоремы 2 и ф-я f(x,y)
имеет непрер. По x и y производные, и пусть интеграл (1) сх-ся, а интеграл
(3) сх-ся равномерно. Тогда
имеет место 
ТЕОРЕМА
4: При предположениях теоремы 2 тогда имеет место (4) 

Д-ВО: основывается на определении равн сх-сти и на соотв теореме для собств интегралов.
ЭЙЛЕРОВЫ ИНТЕГРАЛЫ
Эйлеровым
интегралом 1 рода наз-ся интеграл вида
a,b>0
(1).
Он сх-ся для любых a,b>0 и опред след св-ва
1)
док-во чеез подстановку x=1-t
2)
док-во через интегр по частям и
развертывание рекурсии
3)
док-во через замену ![]()
4) ![]()
Эйлеровым
интегралом 2 рода наз-ся интеграл вида(5)
.
1)Г-функция
для " a>0 непрерывна и имеет непрерывную производную всех
порядков. (7)
. 2)
.
.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.