the autoclave reached 265 °C, the reactor was vented to the
atmosphere, very quickly removing the solvent vapors (which
took about 1 min). Next the furnace was removed and the
bomb was flushed with nitrogen for 10 min to remove the
remaining solvent vapors. The autoclave was allowed to cool
to room temperature, yielding a fluffy, white Al(OH)3, which
was placed in a Schlenk tube, connected to a vacuum line, and
surrounded by a furnace. The Schlenk tube was evacuated at
room temperature for 1 h. Next it was slowly heated from room
temperature to 500 °C while under dynamic vacuum. After
the heat treatment was complete, the furnace was turned off
and the Schlenk tube was allowed to cool to room temperature,
while still under dynamic vacuum. After heat treatment, the
aluminum oxide had a light gray color, due to a small amount
of carbon formation (from pyrolysis of residual alkoxy groups).
Synthesis of High Surface Area Mixed NC-Al2O3/MgO.
First the magnesium methoxide solution, was prepared, which is briefly described here. Under argon 0.500 g (0.020mol) of Mg that had been sandpapered, wiped clean with an acetone-wet Kimwipe, and cut into small pieces, was added to a 200 mL round-bottom flask. To the Mg was added 50 mL of methanol, and this was allowed to react while stirring overnight to form a clear colorless solution. Fifty milliliters of
toluene was added to this solution, and it was allowed to stir for 2 h. In a separate 500 mL round-bottom flask, under argon, 1.00 g (0.0040 mol) of aluminum tri-tert-butoxide was added. This was dissolved in a solution of 100 mL of toluene, and 40
mL of tert-butyl alcohol to form a clear colorless solution. The alkoxide solutions were mixed to give the desired molar percentages and then hydrolyzed, with a solution containing a stoichiometric amount of distilled water in 70 mL of absolute
ethanol (added dropwise). The reaction was then stirred at room temperature for 10 h. During this time the reaction mixture remains a clear colorless liquidlike gel. The hydroxide sol-gel was transferred to a glass liner of a Parr autoclave, and dried as described for the pure alumina system. Thermal conversion of aluminum hydroxide/magnesium hydroxide to aluminum oxide/magnesium oxide was carried out as described for the pure alumina system. After heat treatment, the aluminum/magnesium oxide had a light gray color.
Characterization. Transmission Electron Microscopy
(TEM). TEM studies were carried out by adding dry ethanol
to the heat-treated Al2O3, and sonicating this slurry for 5 min
using a Branson 1210 sonicator. A drop of this slurry was then
placed onto a carbon-coated copper grid. TEM experiments
were performed using a Philips 201 TEM or a Philips CM12
TEM.
Brunauer-Emmet-Teller (BET). Surface area measurements
were done by using BET methods. These were conducted
using both Micromeritics Flowsorb II 2300 and Quantachrome
NOVA 1200 instrumentation. The samples were first
outgassed at the desired temperature and then allowed to cool
to room temperature.
Powder X-ray Diffraction (XRD). For XRD studies the Al2O3
samples were heat treated under vacuum directly before being
placed onto the sample holder. The instrument used was a
Scintag XDS 2000 spectrometer. Cu KR radiation was the light
source used with applied voltage of 40 kV and current of 40
mA. The 2ý angles ranged from 20 to 85° with a speed of 2°/
min. The crystallite size was then calculated from the XRD
spectra using the Scherrer equation.
Infrared Spectroscopy (FT-IR). FT-IR was used to observe
solvent removal during the heat treatment process. These
experiments were conducted on an RS-1 FTIR spectrometer
from Mattson with a liquid-nitrogen-cooled MCT detector.
Heat-treated samples of NC-Al2O3 and CM-Al2O3 were made
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.