Компоновка конструктивной схемы каркаса здания. Расчёт поперечной рамы здания. Проверка местной устойчивости верхней и нижней части колонны, страница 5

Суммарная эпюра значений моментов на левой стойке (рисунок 10г):

Суммарная эпюра значений моментов на правой стойке (рисунок 10г):

Эпюра Q (рисунок 10д):

Поперечная сила на правой стойке:

Сумма поперечных сил должна равняться сумме всех горизонтальных нагрузок:

2.3.4 Расчёт на вертикальную нагрузку от мостовых кранов

Расчёт проводится при расположении тележки крана у левой стойки. Основная система и схема загружения приведены на рисунке 11а.

Проверка возможности считать ригель абсолютно жёстким выполняется по формуле:

где JP=20 – момент инерции ригеля

Условие выполняется, т.о. можно считать ригель абсолютно жёстким.

Каноническое уравнение для определения смещения плоской рамы:

Момент и реакция от смещения верхних узлов на Δ=1 (рисунок 11б) определяется с помощью таблицы 12.4.

Моменты и реакции на левой стойке от нагрузки (рисунок 11в):

М – максимальная нагрузка от крана

Усилия на правой стойке получаем аналогично, умножая усилия левой стойки на отношение :

Реакция верхних концов стоек:

Смещение плоской рамы:

Крановая нагрузка линейная, поэтому .

При жёсткой кровле  определяется:

где n – число рам в блоке, n=13;

 – расстояние между симметрично расположенными относительно середины блоками рамы:

=722+602+482+362+242+122=13104;

 – расстояние между рамами, стоящими вторыми от торцов здания, =60м;

 – число колёс крана на одной нитке подкрановой балки, =2;

– сумма координат линий влияния, =1,15м

Смещение с учётом пространственной работы:

Эпюра моментов  от фактического смещения рамы с учётом пространственной работы показана на рисунке 11г, а суммарная эпюра + –  на рисунке 11д.

Эпюра Q (рисунок 10е) свидетельствует о правильности расчёта (поперечные силы в верхних и нижних частях стоек практически одинаковы).

Разница в значениях нормальных сил (рисунок 11ж) с левого и правого концов ригеля получились за счёт передачи горизонтальных сил на соседние рамы.

 


Рисунок 11 – К расчёту рам на вертикальную нагрузку

от мостовых кранов

2.3.5 Расчёт на горизонтальные воздействия от мостовых кранов

Основная система, эпюра М1, каноническое уравнение, коэффициент  такие же как при расчёте на вертикальную нагрузку от мостовых кранов. Моменты реакции в основной системе от силы Т:

Смещение верхних концов с учётом пространственной работы:

 


Рисунок 12 – Эпюры усилий от горизонтальных воздействий крана

Проверка правильности решения:

Скачёк на эпюре Q 6,7+4,2=10,9кН примерно равен силе Т=10,5кН, а на правой стойке поперечные силы в верхней и нижней частях равны 3,49кН.

3. РАСЧЁТ И КОНСТРУИРОВАНИЕ КОЛОННЫ

Верхняя часть колонны проектируется в виде симметричного сварного двутавра. Расчётные значения усилий (смотри таблицу 2) равны:

- для верхней части колонны в сечении 1-1 Мmax=-440,44 кН·м, соответствующее ему усилие Nсоотв.=-370,69 кН;

- для нижней части колонны в сечении 3-3 Мmax=-257,93 кН·м, соответствующее ему усилие Nсоотв.=-528,76 кН (изгибающий момент догружает подкрановую ветвь);

- в сечении 4-4 Мmax=557,33 кН·м, соответствующее ему усилие Nсоотв.=-528,76 кН (изгибающий момент догружает наружную ветвь);

- Qmax в сечении 4-4 составляет -22,65 кН.

Соотношение жесткостей

3.1 Определение длины в плоскости и из плоскости рамы

Колонна работает на сжатие с изгибом. Расчётные длины для верхней и нижней частей колонны в плоскости рамы определяем по формулам:

 – расчётная длина верхней части колонны;

 – расчётная длина нижней части колонны;

– высоты верхней и нижней части колонны,

 – коэффициент расчётной длины, =, где n – отношение жёсткости верхней и нижней части колонны:

– коэффициент, учитывающий соотношение продольных сил:

=

=

По таблице 2 Приложения 12 [2], которая содержит коэффициент приведения  для одноступенчатых колонн с верхним концом, закреплённым только от поворота, интерполируя, получим значение  и вычислим значение :