Обработка и передача дискретных сообщений, лекции и материалы, страница 160

Этот результат можно получить, если в схеме деления убрать вход, а цепь обратной связи подать непосредственно на вход ячейки r0. При этом для генерирования элементов поля как последовательности степеней αi в виде m-значных двоичных чисел, записанных в ячейках регистра необходимо предварительно в ячейку r0  записать «1». В этом случае в исходном состоянии на нулевом такте работы рассматриваемой схемы как генератора элементов GF(2m) будет записан остаток от деления x0 на g(x). Элемент поля αi появится в регистре на i-м такте, что соответствует подаче на вход схемы деления xi на нулевом такте.

Все 2m-1 не нулевых элементов GF(2m) , будут получены за 2m-1 тактов работы схемы. До m-1 такта работы схемы  включительно регистр будет содержать в своих ячейках только одну единицу и m-1 нулей. На m-м такте содержимое регистра станет равным g'(x)=g(x)+xm , где g'(x)- многочлен, состоящий из всех слагаемых g(x), кроме слагаемого старшей степени xm. В силу того, что g(x) принадлежит идеалу, т.е. {g(x)}={0}, получаем g(x)=xm.

Продолжая сдвиги, получим, что на m+1 такте содержимое ячеек регистра будет соответствовать xg(x), т.е. подаче на вход схемы деления на нулевом такте xm+1 и т.д. Так будет продолжаться до тех пор, пока содержимое ячеек регистра не станет эквивалентным подаче на вход схемы деления xn. Это состояние регистра соответствует α0=1,т.к. xn=1( см.6.1). В силу того, что многочлен g(x) примитивен, он принадлежит показателю n=2m-1. Это означает, что до возвращения в состояние α0=1 в регистре генератора на различных тактах работы появятся с учётом нулевого такта все ненулевые последовательности длины m и каждая только один раз.

Проиллюстрируем изложенное примером 6.15

Пример 6.15.Построим генератор элементов поля GF(23). Для этой цели используем примитивный многочлен 1+x+x3. Класс вычетов {x}=α является корнем 1+x+x3 и примитивным элементом поля GF(23). Схема генератора элементов поля GF(23) и пояснение ее работы представлены на рис. 6.9.