Постоянный электрический ток. Закон Ома для цепи с распределенными пара­метрами, страница 9

Если же при образовании кристалла из атомов уровень Ферми совпадет с верхней границей разрешенной энергетической зоны (рис. 7.6.4), этот кристалл будет проявлять диэлектрические свойства. Действительно, для перехода в ближайшую незанятую разрешенную зону,  где электрон может незначительно изменять свою энергию под действием внешнего поля, ему необходимо преодолеть запрещенную энергетическую зону, ширина которой существенно превышает характерные значения тепловой энергии и энергии, передаваемой электрону от поля.

Полупроводники, в известном смысле, занимают промежуточное положение между традиционными проводниками и диэлектриками. С точки зрения зонной теории собственные полупроводники (рис.7.7.1) могут рассматриваться как диэлектрики с очень узкой запрещенной зоной. Наиболее распространенными представителями собствнных полупроводников являются кристаллы кремния и германия. При сверх низких температурах такие кристаллы проявляют диэлектрические свойства, поскольку электроны оказываются неспособными преодолеть узкую запрещенную зону, отделяющую их от зоны проводимости. Однако, даже комнатных температур оказывается достаточно для того, чтобы указанный энергетический барьер оказался преодолимым для электронов. В результате частицы, перешедшие в следующую разрешенную зону (зону проводимости) приобретают способность ускоряться электрическим полем и, следовательно, переносить ток.

При переходе электрона в зону проводимости из заполненной зоны (валентной зоны) в зону проводимости в первой остается незаполненное место, которое легко может занять какой-либо электрон из той же зоны. В результате образовавшаяся вакансия приобретает возможность перемещаться в пределах валентной зоны. Ее поведение во многом напоминает поведение частицы с положительным зарядом.

Для упрощения описания ансамбля из большого числа электронов в почти заполненной валентной зоне часто оказывается более удобным следить за имеющимися вакансиями, рассматривая их как некоторые гипотетические частицы – дырки (простым гидромеханическим аналогом дырки может служить пузырек в стакане с газированным напитком).  Не являющиеся реальными объектами природы дырки часто обладают весьма экзотическими свойствами. Так их эффективная масса нае обязательно должна выражаться положительным числом, а зачастую оказывается тензорной величиной. Наряду с фононами дырки представляют собой квазичастицы, вводимые в теорию на основе аналогий с формулами, описывающими поведение реальных объектов. Подобно положительным частицам дырки ускоряются электрическим полем и вносят свой вклад в проводимость полупроводниковых кристаллов.

Попутно отметим, что электроны проводимости, строго говоря, так же являются квазичастицами. С точки зрения квантовой механики все электроны кристалла являются принципиально неразличимыми, что делает бессмысленными попытки ответа на вопрос, какой именно электрон перешел в зону проводимости. Электрический ток в кристалле обусловлен весьма сложным поведением всех без исключения имеющихся в нем электронов. Однако описывающие это поведение уравнения обнаруживают близкое сходство с уравнениями движения лишь очень небольшого числа заряженных частиц – электронов и дырок.

Наряду с полупроводниками с собственной проводимостью  существуют примесные полупроводники. Последние получают внедрением в кристаллы собственных полупроводников (состоящих из атомов четырехвалентных  элементов) примесей из трех или пяти валентных атомов (донорные и акцепторные примеси соответственно). Из-за малых концентраций атомов примесей их энергетически уровня в зоны не расщепляются. В результате оказывающиеся на примесных уровнях электроны  и дырки не обладают подвижностью. С точки зрения энергетической схемы не участвующий в образовании валентных связей пятый электрон атома донорной примеси оказывается на уровне в непосредственной близости от зоны проводимости (рис.7.7.2) и легко переходит в эту зону. Образующаяся при этом дырка оказывается локализованной вблизи атома примеси.  Т.о. в примесных полупроводниках донорного типа преимущественно реализуется электроных характер проводимости. В полупроводниках с акцепторной примесью ситуация оказывается точно противоположной (рис.7.7.3). Атом третьей группы захватывает недостающий для образования химической связи электрон у четырехвалентных соседей. В результате в валентной зоне возникают подвижные дырки, являющиеся носителями зарядов в таких системах.