Математические методы и модели: Семестровое задание и методические указания к решению задач

Страницы работы

42 страницы (Word-файл)

Фрагмент текста работы

Министерство образования Российской Федерации

Южно-Уральский государственный университет

Кафедра «Экономика и инвестиции»

_

_

МАТЕМАТИЧЕСКИЕ МЕТОДЫ И МОДЕЛИ

Семестровое задание

и методические указания к решению задач

Челябинск

Издательство ЮУрГУ

2000

УДК

ББК

, Математические методы и модели: Семестровое задание и методические рекомендации к решению задач. – Челябинск: Издательство ЮУрГУ, 2000. – 39 с.

Приведены задачи семестрового задания, методические указания к их решению, примеры вычислений, рекомендуемая литература и приложения.

Пособие предназначено для студентов специальностей 060811, 061101, 061120.

Табл. 12, прилож. 4, список лит. – 13 назв.

Одобрено учебно-методической комиссией факультета «Экономика и управление».

Рецензент:


Задача 1

Многофакторный регрессионный и корреляционный анализ

Варианты задач с 1 по 25 с указанием результативного y и факторных x1, x2 признаков приведены в табл. 1.

По выборочным данным, представленным в табл. 2 и табл. 3, исследовать на основе линейной регрессионной модели зависимость результативного признака от показателей производственно-хозяйственной деятельности предприятий.

Таблица 1

Варианты задач

№ вар.

Результативный признак

Факторные признаки

№ вар.

Результативный признак

Факторные признаки

1

y1

x1,x3

14

y3

x1,x14

2

y2

x1,x5

15

y2

x5,x9

3

y2

x1,x7

16

y3

x8,x10

4

y2

x1,x11

17

y3

x7,x14

5

y2

x1,x10

18

y3

x3,x6

6

y1

x3,x4

19

y3

x1,x14

7

y2

x3,x11

20

y1

x2,x6

8

y2

x11,x5

21

y1

x3,x7

9

y1

x3,x5

22

y2

x5,x8

10

y2

x11,x6

23

y2

x9,x10

11

y2

x1,x6

24

y3

x4,x11

12

y2

x1,x12

25

y3

x1,x12

13

y2

x1,x2

Таблица 2

Обозначения и наименование показателей

производственно-хозяйственной деятельности предприятий

Обозначение показателя

Наименование показателя

y1

Производительность труда, тыс.руб./чел.

y2

Индекс снижения себестоимости продукции

y3

Рентабельность

x1

Трудоемкость единицы продукции

x2

Удельный вес рабочих в составе ППР

x3

Удельный вес покупных изделий

x4

Коэффициент сменности оборудования, смен

x5

Премии и вознаграждения на одного работника ППР, тыс.руб.

x6

Удельный вес потерь от брака,%

x7

Фондоотдача активной части ОПФ, руб./руб.

x8

Среднегодовая численность ППР, чел.

x9

Среднегодовая стоимость ОПФ, млн.руб.

x10

Среднегодовой фонд заработной платы ППР

x11

Фондовооруженность труда, тыс.руб./чел.

x12

Оборачиваемость нормируемых оборотных средств, дн.

x13

Оборачиваемость ненормируемых оборотных средств, дн.

x14

Непроизводительные расходы, тыс.руб.


Таблица 3

Исходные данные для расчета

y1

y2

y3

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

1

9,4

62

10,6

0,23

0,62

0,4

1,35

0,88

0,15

1,91

7394

39,53

14257

5,35

173,9

11,88

28,13

2

9,9

53,1

9,1

0,43

0,76

0,19

1,39

0,57

0,34

1,68

11586

40,41

22661

3,9

162,3

12,6

17,55

3

9,1

56,5

23,4

0,26

0,71

0,44

1,27

0,7

0,09

1,89

7801

37,02

14903

4,88

101,2

8,28

19,52

4

5,5

30,1

9,7

0,43

0,74

0,25

1,1

0,84

0,05

1,02

6371

41,08

12973

5,65

177,8

17,28

18,13

5

6,6

18,1

9,1

0,38

0,72

0,02

1,23

1,04

0,48

0,88

4210

42,39

6920

8,85

93,2

13,32

21,21

6

4,3

13,6

5,4

0,42

0,68

0,06

1,39

0,66

0,41

0,62

3557

37,39

5736

8,52

126,7

17,28

22,97

7

7,4

89,8

9,9

0,30

0,77

0,15

1,38

0,86

0,62

1,09

14148

101,7

26705

7,19

91,8

9,72

16,38

8

6,6

76,6

19,1

0,37

0,77

0,24

1,35

1,27

0,5

1,32

15118

81,32

28025

5,38

70,6

8,64

16,16

9

5,5

32,3

6,6

0,34

0,72

0,11

1,24

0,68

1,2

0,68

6462

59,92

11049

9,27

97,2

9,0

20,09

10

9,4

199

14,2

0,23

0,79

0,47

1,4

0,86

0,21

2,3

24628

107,3

45893

4,36

80,3

14,76

15,98

11

5,7

90,8

8

0,41

0,71

0,2

1,28

0,45

0,66

1,43

1948

80,83

36813

4,16

128,5

10,44

22,76

12

5,2

82,1

17,5

0,41

0,79

0,24

1,33

0,74

0,74

1,82

18963

59,42

33956

3,13

94,7

14,76

15,41

13

10,0

76,2

17,2

0,22

0,76

0,54

1,22

1,03

0,32

2,62

9185

36,96

17016

4,02

85,3

20,52

19,35

14

6,7

37,1

12,9

0,31

0,79

0,29

1,35

0,96

0,39

1,24

6391

37,21

11688

5,82

85,3

7,92

14,63

15

9,4

51,6

13,2

0,24

0,70

0,56

1,2

0,98

0,28

2,03

6555

32,87

12243

5,01

116,6

18,72

22,62


Методические указания к решению задачи 1

Множественный корреляционный анализ состоит в оценке корреляционной матрицы генеральной совокупности по выборке и определении на ее основе оценок частных и множественных коэффициентов корреляции и детерминации.

Парный и частный коэффициенты корреляции характеризуют тесноту линейной зависимости между двумя переменными соответственно на фоне действия и при исключении влияния всех остальных показателей, входящих в модель. Диапазон изменения этих коэффициентов [-1;1].

Множественный коэффициент корреляции характеризует тесноту связи между одной переменной (результативной) и остальными, входящими в модель. Диапазон изменения этого коэффициента [0;1].

Квадрат множественного коэффициента корреляции называется множественным коэффициентом детерминации; он характеризует долю дисперсии одной переменной (результативной), обусловленной влиянием остальных, входящих в модель.

Дополнительная задача корреляционного анализа (основная – в регрессионном) – оценка уравнения регрессии.

Исходной для анализа является матрица X размерности (n´k), которая представляет собой n наблюдений для каждого из k факторов. Оцениваются: вектор средних Xср, вектор среднеквадратических отклонений S и корреляционная матрица R:

Xср=(x1ср, x2ср,…, xjср,…, xkср);

S=(s1, s2, …, sj, …, sk);

1

r12

r1k

R=

r21

1

r2k

rk1

rk2

1

где rjl=[S(xij-xjср)(xil-xlср)]/(nsjsl), j,l=1,2,…,k;

sj=([S(xij - xjср)2]/n)0,5, i=1…n;

xil – значение i-того наблюдения j-того фактора.

Кроме того, находятся оценки частных и множественных коэффициентов корреляции любого порядка. Например, частный коэффициент корреляции порядка k-2 между факторами X1 и X2 равен

r12/3,4,…,k=-R12/(R11R22)0,5, где Rjl – алгебраическое дополнение элемента r12 матрицы R.

Множественный коэффициент корреляции порядка k-1 фактора X1 (результативного признака) определяется по формуле

r1/2,3,…,k= r1=(|R12|/R11)0,5, где |R12| – определитель матрицы R.

Значимость парных и частных коэффициентов корреляции проверяется по t-критерию Стьюдента. Наблюдаемое значение критерия находится по формуле

tнабл=(n-l-2)0,5r/(1-r2)0,5, где r – оценка коэффициента, l – порядок коэффициента корреляции (число фиксируемых факторов).

Коэффициент корреляции считается значимым (т.е. гипотеза H0: r=0 отвергается с вероятностью ошибки a), если |tнабл|>tкр, определяемого по таблицам t-распределения (Приложение 1) для заданного a и n=n-l-2.

Значимость множественного коэффициента корреляции (или его квадрата – коэффициента детерминации) определяется по F-критерию. Наблюдаемое значение, например, для r21/2,…k, находится по формуле

Fнабл= [r21/2,…k/(k-1)]/[(1-r21/2,…k)/(n-k)].

Множественный коэффициент корреляции считется значимым, если Fнабл>Fкр(a, k-1, n-k), где Fкр определяется по таблице F-распределения (Приложение 1) для заданных  a, n1=k-1 и n2=n-k.

Множественный регрессионный анализ – это статистический метод исследования зависимости случайной величины y  от переменных xj, рассматриваемых как неслучайные величины независимо от истинного закона распределения xj. Предполагается, что y имеет нормальный закон распределения с условным мат. ожиданием y=j(x1,x2,…,xk), являющимся функцией от аргументов xj, и с постоянной, не зависящей от аргументов дисперсией s2. Наиболее часто встречаются линейные уравнения регрессии вида y=b0+b1x1+b2x2+…+bjxj+…+bkxk, линейные относительно неизвестных параметров bj (j=0,1,…,k) и аргументов xj.

Коэффициент регрессии bj показывает, на какую величину в среднем изменится результативный признак y, если переменную xj увеличить на единицу ее измерения, т.е. является нормативным коэффициентом.

В матричной форме регрессионная модель имеет вид

Y=Xb+e, где Y – случайный вектор-столбец размерности [n´1] наблюдаемых значений результативного признака (y1,y2,…,yn); X – матрица размерности [n´ (k+1)] наблюдаемых значений аргументов. Элемент матрицы xij рассматривается как неслучайная величина (i=1,2,…,n; j=0,1,2,…,k; xоi=1); b– вектор-столбец размерности [(k+1)´1] неизвестных коэффициентов

Похожие материалы

Информация о работе

Тип:
Методические указания и пособия
Размер файла:
861 Kb
Скачали:
0