На основе взаимной корреляционной функции установлено, что цепь капиталовложений равна 1, то есть через 1 год после инвестирования можно получить наибольший прирост чистого дохода.
Решение
1) Идентификация переменных и спецификация модели.
У – чистый доход, зависимая переменная;
Х – объем капиталовложений, пояснительная переменная.
Эконометрическая модель имеет вид:
Уt = f(x1);
Уt = a0 + a1 xt-1 + ut; (ut – стохастическая составляющая);
Уt = a0 + a1 xt-1 – линейная функция.
2) Оценка параметров модели.
Так как цепь капиталовложений = 1 год, то исходные данные будут сокращены на 1 наблюдение, причем во временном ряду чистого дохода будет отброшено первое наблюдение, а во временном ряду капиталовложений – одно последнее наблюдение.
Матрица У – вектор значений зависимой переменной.
где Â = В-1 * (Хт * У),
Хт – транспонированная матрица:
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.