Davis L (ed.). 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold: New York.
Deboeck G. 1998. Financial applications of self-organizing maps. Neural Network World 8(2): 213–241.
DeJong KA. 1975. An analysis of the behavior of a class of genetic adaptive systems. PhD dissertation, University of Michigan, Ann Arbor, MI.
Demuth H, Beale M. 2001. Neural Network Toolbox. The MathWorks Inc., Natick Press: Massachusetts, USA.
Dorsey RE, Mayer WJ. 1995. Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features. Journal of Business and Economic Statistics 13(1): 53–66.
Edmister RO. 1972. An empirical test of financial ratio analysis for small business failure prediction. Journal of Financial and Quantitative Analysis 7: 1477–1493.
Eklund T, Back B, Vanharanta H, Visa A. 2003. Financial benchmarking using self-organizing maps—studying the international pulp and paper industry. In Data Mining—Opportunities and Challenges, Wang J (ed.). Idea Group Publishing: Hershey, PA; 323–349.
Fisher RA. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7(Part II): 179– 188.
Fogel DB, Wasson EC, Boughton EM. 1995. Evolving neural networks for detecting breast cancer. Cancer Letters 96: 49–53.
Fogel DB, Wasson EC, Boughton EM, Porto VW. 1998. Evolving artificial neural networks for screening features from mammograms. Artificial Intelligence in Medicine 14(3): 317–326.
Fogel GB, Weekes DG, Sampath R, Ecker DJ. 2004. Parameter optimization of an evolutionary algorithm for RNA structure discovery. In Proceedings of 2004 Congress on Evolutionary Computation. IEEE Press: Piscataway, NJ; 607–613.
Frydman H, Altman EI, Kao DL. 1985. Introducing recursive partitioning for financial classification: the case of financial distress. The Journal of Finance 40(1): 269–291.
Hagan MT, Demuth HB, Beale M. 1996. Neural Networks Design. PWS Publishing: Boston, MA.
Hamer M. 1983. Failure prediction: sensitivity of classification accuracy to alternative statistical method and variable sets. Journal of Accounting and Public Policy 2(Winter): 289–307.
Hancock P. 1992. Coding strategies for genetic algorithms and neural nets. PhD thesis, University of Stirling, Department of Computer Science.
Hartman E, Keeler JD. 1991. Predicting the future: advantages of semilocal units. Neural Computation 3(4): 566–578.
Hesser J, Männer R. 1990. Towards an optimal mutation probability for genetic algorithms. In Proceedings of the 1st Workshop on Parallel Problem Solving from Nature. Springer-Verlag: 23–32.
Hoehn PT. 1998. Wolves in sheep’s clothing? The effects of ‘hidden’ parental mutation on genetic algorithm performances. In Proceedings of ACM 36th Annual Southeast Regional Conference; 221–227.
Jeng B, Jeng YM, Liang TP. 1997. FILM: a fuzzy inductive learning method for automatic knowledge acquisition. Decision Support Systems 21(2): 61–73.
Jones F. 1987. Current techniques in bankruptcy prediction. Journal of Accounting Literature 6: 131–164.
Karlsson J. 2002. Data-mining, benchmarking and analysing telecommunications companies. Licentiate thesis, Department of Information Systems, Åbo Akademi University, Turku.
Klir GJ, Yuan B. 1995. Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall PTR: Upper Saddle River, NJ.
Kohonen T. 1997. Self-Organizing Maps, 2nd edition. Springer-Verlag, Heidelberg.
Koskivaara E. 2000. Different pre-processing models for financial accounts when using neural networks for auditing. In Proceedings of the European Conference on Information Systems, Hansen HR, Bichler M, Mahrer H (eds), Vienna, Austria, 3–5 July; 326–332.
Koskivaara E. 2004. Artificial neural networks in analytical review procedures. Managerial Auditing Journal 19(2): 191–223.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.