Фазометр. Назначение и принципы построения

Страницы работы

Содержание работы

Фазометр

1.  Цели и задачи исследований

Уровень 1: Изучить работу фазометров - их принципы действия и метрологические характеристики. Приобрести практические навыки работы с виртуальным прибором в режимах измерения фазового сдвига гармонического сигнала и задержки периодических импульсов.

Уровень 2: Применить фазометр для измерения параметров  сигналов при наличии и отсутствии шумов, а также для испытаний регулируемого фазовращателя, линии задержки и двухканального осциллографа.  

Уровень 3: Изучить и освоить методики поверки фазометра путем определения его основных метрологических характеристик. Выполнить учебную поверку фазометра с помощью образцовых виртуальных приборов.

2.  Назначение и принципы построения

Фазой гармонического напряжения  называется аргумент функции . Сдвиг фазы представляет собой модуль разности аргументов двух гармонических сигналов U1(t) иU2(t) одинаковой частоты. Если  и  постоянны, то  от времени не зависит. При  гармонические напряжения называются синфазными, при  - противофазными.

Физически разность фаз двух сигналов возникает в результате задержки одного из них по отношению к другому. При этом для работы многих электронных устройств сдвиг фазы имеет существенное значение и подлежит измерению и регулировке. Для негармонических колебаний применяют понятия сдвиг или задержка по времени.

Измерение сдвига фазы может выполняться методами непосредственной оценки и сравнения. Измерительные приборы называются фазометрами.

Основные методы измерений:

1. Осциллографические (на основе меток времени или линейной развертки).

Наиболее просто фазовый сдвиг можно измерить двухканальным осциллографом, сделав отсчеты по горизонтальной оси времени или в относительных единицах оси Х:

Достижимая погрешность 2…5о определяется разрешающей способностью осциллографа. Диапазон частот также ограничивается осциллографом.

2. Компенсационные  (на основе сравнения измеряемого и образцового фазового сдвига, создаваемого регулируемым фазовращателем).

Диапазон частот очень широкий, включает СВЧ. Точность на порядок выше 0,2…0,5о.

Рис. 1

3. С преобразованием фазового сдвига в напряжение, во временной интервал и др.

Например, в тpиггеpном фазометре опорный и исследуемый сигналы поступают (pис. 2) на входы триггеров Шмитта, вырабатывающих импульсы запуска формирователя интервала задержки измеряемого сигнала по отношению к опорному.

 


Рис. 2

ФНЧ и индикатор интегрируют импульсы t   за период Т. Постоянное напряжение на выходе фильтра низких частот (ФНЧ) пропорционально относительной длительности импульса t/T  на выходе триггера и, соответственно, разности фаз между опорным и исследуемым сигналами. Через измерительный индикатор протекает ток, среднее значение которого пропорционально измеряемой величине. Электронные аналоговые фазометры позволяют измерять сдвиг фаз в диапазоне частот от десятков герц до единиц мегагерц. Относительная погрешность таких фазометров составляет 1-2%, разрешающая способность до 1°.

4. Цифровые

В серийных автономных цифровых фазометрах обычно используется принцип преобразования измеряемого сдвига фазы во временной интервал, длительность которого пропорциональна значению измеряемой величины. Длительность временного интервала определяется методом дискретного (последовательного) счета (рис. 3 и 4) непосредственно или с промежуточным преобразованием временного интервала в пропорциональное ему значение величины напряжения постоянного тока.

Рис. 3

В интервал Tизм попадает большое число импульсов счета в виде N пачек. Данный фазометр прямопоказывающий, так как сдвиг фазы пропорционален числу счетных импульсов за время Tизм :

где  ;    NT»Tизм.

Рис. 4

Так как здесь осуществляется преобразование Dj во временной интервал, то составляющие погрешности те же, что и при измерении временного интервала. Добавляется погрешность, обусловленная нецелым числом периодов сигнала в интервале измерения Tизм. Эта погрешность при работе с низкими частотами может быть очень высокой, поэтому время измерения увеличивают, оно может достигать десятков секунд, что неудобно.

Микропроцессорный фазометр (см. рис. 5) обладает высоким быстродействием и позволяет измерять фазовые сдвиги за один период сигнала. Здесь два канала, в одном канале измеряется число счетных импульсов m, которое соответствует фазовому сдвигу, в другом канале измеряется число счетных импульсов N, которое соответствует периоду. Фазовый сдвиг вычисляется по формуле:

Рис. 5

Возможен расчет за несколько периодов, т.е. можно оценить средний фазовый сдвиг, это позволяет оценивать флуктуации фазовых сдвигов, оценивать их статистические характеристики.

В современных цифровых фазометрах могут применяться методы обработки дискретизированных сигналов, как во временной, так и в частотной области. Во временной области используются методы дискретного счета и интерполирования. 

В виртуальном фазометре, используемом в лабораторных исследованиях, реализован вычислительный принцип измерения фазового сдвига сигнала на основе БПФ.

3.  Комплекс виртуальных приборов  (КВП)

1.  Общие сведения

КВП содержит 4 виртуальных прибора:

1. Синтезатор сигналов (СС) или калибратор фазового сдвига и времени задержки периодического сигнала.

2. Осциллограф (О).

Похожие материалы

Информация о работе

Тип:
Отчеты по лабораторным работам
Размер файла:
1007 Kb
Скачали:
0