Особенности атомной энергетики. Ресурсы атомной энергетики. Воздействие радиоактивных выбросов на организм человека, страница 2

Атомные электростанции – третий «кит» в системе современной мировой энергетики. Техника АЭС, бесспорно, является крупным достижением НТП. В случае безаварийной работы атомные электростанции не производят практически никакого загрязнения окружающей среды, кроме теплового. Правда в результате работы АЭС (и предприятий атомного топливного цикла) образуются радиоактивные отходы, представляющие потенциальную опасность. Однако объем радиоактивных отходов очень мал, они весьма компактны, и их можно хранить в условиях, гарантирующих отсутствие утечки наружу.

АЭС экономичнее обычных тепловых станций, а, самое главное, при правильной их эксплуатации – это чистые источники энергии.

Вместе с тем, развивая ядерную энергетику в интересах экономики, нельзя забывать о безопасности и здоровье людей, так как ошибки могут привести к катастрофическим последствиям.

Всего с момента начала эксплуатации атомных станций в 14 странах мира произошло более 150 инцидентов и аварий различной степени сложности. Наиболее характерные из них: в 1957 г. – в Уиндскейле (Англия), в 1959 г. – в Санта-Сюзанне (США),  в 1961 г. –  в  Айдахо-Фолсе  (США), в 1979 г. – на АЭС Три-Майл-Айленд (США), в 1986 г. – на Чернобыльской АЭС (СССР).

 РЕСУРСЫ АТОМНОЙ ЭНЕРГЕТИКИ

Естественным и немаловажным представляется вопрос о ресурсах самого ядерного топлива. Достаточны ли его запасы, чтобы обеспечить широкое развитие ядерной энергетики? По оценочным данным, на всем земном шаре в месторождениях, пригодных для разработки, имеется несколько миллионов тонн урана. Вообще говоря, это не мало, но нужно учесть, что в получивших ныне широкое распространение АЭС с реакторами на тепловых нейтронах практически лишь очень небольшая часть урана (около 1%) может быть использована для выработки энергии. Поэтому оказывается, что при ориентации только на реакторы на тепловых нейтронах ядерная энергетика по соотношению ресурсов не так уж много может добавить к обычной энергетике - всего лишь около 10%. Глобального решения надвигающейся проблемы энергетического голода не получается.

Совсем иная картина, иные перспективы появляются в случае применения АЭС с реакторами на быстрых нейтронах, в которых используются практически весь добываемый уран. Это означает, что потенциальные ресурсы ядерной энергетики с реакторами на быстрых нейтронах примерно в 10 раз выше по сравнению с традиционной (на органическом топливе). Больше того, при полном использовании урана становится рентабельной его добыча и из очень бедных по концентрации месторождений, которых довольно много на земном шаре. А это в конечном счете означает практически неограниченное (по современным масштабам) расширение потенциальных сырьевых ресурсов ядерной энергетики.

Итак, применение реакторов на быстрых нейтронах значительно расширяет топливную базу ядерной энергетики. Однако может возникнуть вопрос: если реакторы на быстрых нейтронах так хороши, если они существенно превосходят реакторы на тепловых нейтронах по эффективности использования урана, то почему последние вообще строятся? Почему бы с самого начала не развивать ядерную энергетику на основе реакторов на быстрых нейтронах?

Прежде всего следует сказать, что на первом этапе развития ядерной энергетики, когда суммарная мощность АЭС была мала и U 235 хватало, вопрос о воспроизводстве не стоял так остро. Поэтому основное преимущество реакторов на быстрых нейтронах - большой коэффициент воспроизводства - еще не являлся решающим.

В то же время вначале реакторы на быстрых нейтронах оказались еще не готовыми к внедрению. Дело в том, что при своей кажущейся относительной простоте (отсутствие замедлителя) они технически более сложны, чем реакторы на тепловых нейтронах. Для их создания необходимо было решить ряд новых серьезных задач, что, естественно, требовало соответствующего времени. Эти задачи связаны в основном с особенностями использования ядерного топлива, которые, как и способность к воспроизводству, по-разному проявляются в реакторах различного типа. Однако в отличие от последней эти особенности сказываются более благоприятно в реакторах на тепловых нейтронах.