[11] S. Golay, L. Kiwi-Minsker, R. Doepper, A. Renken, Chem. Eng. Sci. 54 (1999) 3593-3598.
[12] E. Finocchio, G. Busca, S. Rossini, U. Cornaro, V. Piccoli, R. Miglio, Catal. Today, 33 (1997) 335-352.
[13] E.A. El-Katatny, S.A. Halawy, M.A. Mohamed, M.I. Zaki, Appl. Catal. A: General 199 (2000) 83–92.
[14] H. Knözinger, H. Bühl, E. Ress, J. Catal., 12 (1968) 121-128.
[15] M.E. Malyshev, E.A. Paukshtis, L.V. Malysheva, A.V. Toktarev, L.A. Vostrikova, Kinet. Catal., 46 (2005) 100-106.
[16] H. Zhao, S. Bennici, J. Shen, A. Auroux, J. Catal., 272 (2010) 176-189.
[17] R.A. Zotov, V.V. Molchanov, V.V. Goidin, E.M. Moroz, A.M. Volodin, Kinet. Catal., 51 (2010) 149-152.
[18] A.F. Bedilo, A.M. Volodin, Kinet. Catal., 50 (2009) 314-324.
[19] A.F. Bedilo, A.S. Ivanova, N.A. Pakhomov, A.M. Volodin, J. Mol. Catal. A, 158 (2000) 405-408.
[20] H. Garcia, H.D. Roth, Chem. Rev., 102 (2002) 3947-4007.
[21] V.A. Bolshov, A.M. Volodin, G.M. Zhidomirov, A.A. Shubin, A.F. Bedilo, J. Phys. Chem. 98 (1994) 7551-7554.
[22] A.F. Bedilo, V.I. Kim, A.M. Volodin, J. Catal., 176 (1998) 294-304.
[23] A.V. Timoshok, A.F. Bedilo, A.M. Volodin, React. Kinet. Catal. Lett., 59 (1996) 165-171.
[24] A.F. Bedilo, A.M. Volodin, G.A. Zenkovets, G.V. Timoshok, React. Kinet. Catal. Lett., 55 (1995) 183-190.
[25] V.A. Bolshov, A.V. Toktarev, A.M. Volodin, Mendeleev Comm., (1994) 212-213.
[26] N.A. Pakhomov, A.S. Ivanova, A.F. Bedilo, E.M. Moroz, A.M. Volodin, Stud. Surf. Sci. Catal., 143 (2002) 353-360.
[27] C.R. Narayanan, S. Srinivasan, A.K. Datye, R. Gorte, A. Biaglow, J. Catal., 138, (1992) 659-674.
[28] R. A. Ross, D. E. R. Bennett, J. Catal., 8 (1967) 289-292.
[29] D.N. Stamires, J. Turkevich, J. Am. Chem. Soc., 86 (1964) 749-757.
[30] G. A. Ozin, J. Godber, J. Phys. Chem., 93 (1989) 878-893.
[31] S. Shih, J. Catal., 79 (1983) 390-395.
[32] M.V. Vishnetskaya, A.N. Emelyanov, N.V. Shcherbakov, Yu.N. Rufov, A.N. Ilyichev, Rus. J. Phys. Chem., 78 (2004) 1918-1923.
[33] J.T. Richardson, J. Catal., 9 (1967) 172-177.
[34] H. Vinek, J. A. Lercher, H. Noller, J. Mol. Catal., 30 (1985) 353-359.
[35] C.B. Phillips, R. Datta, Ind. Eng. Chem. Res. 36 (1997) 4466-4475.
[36] K. Tanabe, M. Misono, Y. Ono, H. Hattori, New Solid Acids and Bases, Kodansha, Tokyo, 1989, p. 87.
Figure 1. EPR spectra registered after adsorption of toluene (1), 0.04 M anthracene solution in toluene (2), and 0.02 M 1,3,5-trinitrobenzene (3) solution in toluene on Al2O3 activated at 400°C followed by heat treatment at 80°C for 12 h.
Figure 2. Effect of pretreatment temperature on the concentrations of the weak acceptor sites tested using anthracene and strong acceptor sites tested using toluene.
Figure 3. Dependence of the registered concentration of paramagnetic species on time after adsorption on 0.04 M anthracene solution in toluene at 20°C on Al2O3 (Condea) activated at 400°C.
Figure 4. Dependence of the ethylene formation rate on the concentrations of sulfate and chloride ions.
Figure 5. Effect of the concentration of the sulfates on the concentrations of detected acceptor and donor sites.
Figure 6. Effect of the concentration of the chloride ions on the concentrations of detected acceptor and donor sites.
Figure 7. Dependence of the ethylene formation rate on the concentration of weak acceptor sites. Условия – T=330oC, t=0,5c
Figure 8. Dependence of the ethylene formation rate on the concentration of strong acceptor sites. - T=330oC, t=0,5c
Figure 9. Dependence of the ethylene formation rate on the concentration of weak acceptor sites. – T=350oC, t=0,5c
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.