Ароматические углеводороды (арены): классификация, номенклатура и изомерия, физические свойства

Страницы работы

10 страниц (Word-файл)

Содержание работы

АРЕНЫ

Ароматические углеводороды (арены)циклические углеводороды, объединяемые понятием ароматичности, которая обуславливает общие признаки в строении и химических свойствах.

Классификация

По числу бензольных колец в молекуле арены подразделяются на:

моноядерные

многоядерные

Номенклатура и изомерия

Структурным родоначальником углеводородов бензольного ряда служит бензол С6Н6 от которого строятся систематические названия гомологов.

Для моноциклических соединений сохраняются следующие несистематические (тривиальные) названия:

Положение заместителей указывают наименьшими цифрами (направление нумерации не имеет значения),

а для ди замещенных соединений можно использовать обозначения орто, мета, пара.

Если в кольце три заместителя тони должны получить наименьшие номера, т.е. ряд «1,2,4» имеет преимущество перед «1,3,4».

                                               

1,2-диметил-4-этилбензол (верное название)        3,4-диметил-1-этилбензол (неверно)

Изомерия монозамещенных аренов обусловлена строением углеродного скелета заместителя, у ди- и полизамещенных гомологов бензола добавляется ещё изомерия, вызванная различным расположением заместителей в ядре.

Изомерия ароматических УВ состава С9Н12:

Физические свойства

Температуры кипения и плавления у аренов выше, чем у алканов, алкенов, алкинов, малополярные, не растворимы в воде и хорошо растворимы в неполярных органических растворителях. Арены это жидкости или твердые вещества, имеющие специфические запахи. Бензолы и многие конденсированные арены токсичны, некоторые из них проявляют концерогенные свойства. Промежуточными продуктами окисления конденсированных аренов в организме являются эпоксиды, которые либо сами непосредственно вызывают рак, либо являются предшественниками канцерогенов.

Получение аренов

Многие ароматические УВ имеют важное практическое значение и производятся в крупном промышленном масштабе. Ряд промышленных способов основан на переработке угля и нефти.

Нефть состоит главным образом из алифатических и алициклических УВ, для превращения алифатических или ациклических УВ в ароматические разработаны способы ароматизации нефти, химические основы которых развиты Н.Д. Зелинским, Б.А. Казанским.

1. Циклизация и дегидрирование:

2. Гидродезметилирование:

3. Гомологи бензола получают путем алкилирования или ацилирования с последующим восстановлением карбонильной группы.

а) Алкилирование по Фриделю-Крафтсу:

б) Ацилирование по Фриделю-Крафтсу:

4. Получение бифенила по реакции Вюрца-Фитинга:

5. Получение дифенилметана по реакции Фриделя-Крафтса:

Строение и химические свойства.

Критерии ароматичности:

На основании теоретических расчетов и экспериментального изучения циклических сопряженных систем было установлено, что соединение ароматично, если оно имеет:

  • Плоский циклический σ-скелет;
  • Сопряженную замкнутую π-электронную систему, охватывающую все атомы цикла и содержащую 4n + 2, где n = 0, 1, 2, 3 и т.д. Эта формулировка известна, как правило Хюккеля. Критерии ароматичности позволяют отличать сопряженные ароматические системы от всех других. Бензол содержит секстет π-электронов и соответствует правилу Хюккеля при n = 1.

Что дает ароматичность:

Несмотря на высокую степень ненасыщенности, ароматические соединения устойчивы к действию окислителей и температуры, они более склонны вступать в реакции замещения, а не присоединения. Эти соединения обладают повышенной термодинамической стабильностью, обеспечивающейся высокой энергией сопряжения ароматической системы кольца (150 кДж/моль), поэтому арены предпочтительней вступают в реакции замещения, в результате чего сохраняют ароматичность.

Механизм реакций электрофильного замещения в ароматическом кольце:

Электронная плотность π-сопряженной системы бензольного кольца является удобным объектом для атаки электрофильными реагентами.

Как правило, электрофильные реагенты генерируются в процессе реакции при помощи катализаторов и соответствующих условий.

          Кат.

Е – Y → Eδ+ – Yδ- → E+ + Y- 

Образование π-комплекса. Первоначальная атака электрофилом π-электронного облака кольца приводит к координации реагента с π-системой и образованию комплекса донорно-акцепторного типа называемого π-комплекса. Ароматическая система не нарушается:

Образование σ-комплекса.  Лимитирующая стадия, на ней электрофил образует ковалентную связь с атомом углерода за счет двух электронов π-системы кольца, что сопровождается переходом данного атома углерода из sp2- в  sp3-гибридное состояние и нарушением ароматической, молекула превращается в карбокатион.

Стабилизация σ-комплекса. Осуществляется путем отщепления от σ-комплекса протона с помощью основания. При этом за счет двух электронов разрывающейся ковалентной связи С – Н восстанавливается замкнутая π-системы кольца, т.е. происходит возврат молекулы в ароматическое состояние:

Влияние заместителей на реакционную способность и ориентацию электрофильного замещения

 Заместители в бензольном кольце нарушают равномерность в распределении  π-электронного облака кольца и тем самым оказывают влияние на реакционную способность кольца.

  • Электронодонорные заместители (Д) повышают электронную плотность кольца и увеличивают скорость электрофильного замещения, такие заместители называют активирующими.
  • Электроноакцепторные заместители (А) понижают электронную плотность кольца и уменьшают скорость реакции, называются дезактивирующими.

Похожие материалы

Информация о работе

Тип:
Конспекты лекций
Размер файла:
732 Kb
Скачали:
0