р-n –перехода образуется пространственный заряд ионов соответствующей примеси, который создает электрическое поле с контактной разностью потенциалов φк. Контактное электрическое поле вызовет дрейфовый ток неосновных носителей (электронов из p-области в n-область, а дырок из n-области в p-область), который в отсутствии внешнего напряжения на p-n–переходе будет уравновешивать диффузионный ток основных носителей так, что суммарный ток через p-n–переход будет равен нулю. Условие равновесия p-n–перехода заключается в требованиии постоянства уровня Ферми (уровня энергии, вероятность заполнения которого электронами равна ) вдоль всего перехода (рис.1).
При приложении прямого напряжения к p-n–переходу, когда внешнее поле противоположно внутреннему полю перехода (рис.2,а) величина потенциального барьера для основных носителей уменьшится, и они могут проникнуть в область кристалла с противоположным типом проводимости (инжекция неосновных носителей, например, электронов в p-область перехода).
Расстояние, на котором концентрация инжектированных носителей падает вследствие рекомбинации с основными в e раз, называется диффузионной длиной и обозначается Lp и Ln для дырок и электронов соответственно.
Обратное напряжение (рис. 2,б) увеличит потенциальный барьер для основных носителей. Увеличение обратного напряжения приведет к насыщению тока, созданного неосновными носителями.
Полный ток через p-n-переход равен сумме дырочного Ip и электронного In токов
I=In+Ip=Is (e-1) (1)
Здесь q- заряд электрона;
k- Постоянная Больцмана;
U- напряжение на p-n-переходе (берется со знаком «+» для прямого и со знаком «-» для обратного напряжения).
Is- ток насыщения
Ток насыщения диода (он же темновой ток фотодиода) переносится термически созданными парами электрон-дырка, образовавшимися на расстоянии от p-n-перехода, не превышающем диффузионную длину (предполагается, что Lp и Le велики по сравнению с шириной p-n-перехода).
Принцип действия фотодиода
В основе работы полупроводникового фотодиода лежат явления внутреннего фотоэффекта и разделения носителей полем p-n-перехода.
При внутреннем фотоэффекте в полупроводниках при поглощении фотона с энергией, достаточной для перехода электрона из валентной зоны в зону проводимости, происходит образование пары электрон- дырка.
При относительно низких интенсивностях изменение концентрации основных носителей при внутреннем фотоэффекте незначительно по сравнению с равновесной концентрацией. По этой причине изменение прямой ветви вольт-амперной характеристики (ВАХ) диода при освещении p-n-перехода незаметно. Для работы фотодиода используется обратная ветвь ВАХ p-n-перехода.
Носители, созданные светом на расстоянии диффузионной длины с обеих сторон p-n-перехода (рис. 3) диффундируют к p-n-переходу и увлекаются там электрическим полем. Разделение носителей происходит по той причине, что основным носителям при движении через p-n-переход приходится преодолевать потенциальный барьер, тогда как неосновные носители попадают в ускоряющее поле и легко перебрасываются на другую сторону p-n-перехода . Кроме того происходит и разделение пар, генерированных светом в пределах p-n-перехода. В результате дырки движутся в p-область, а электроны- в n-область, создавая электронный ток, направленный в n-область.
Суммарный фототок неосновных носителей I=Ifn+Ifp нарушает тепловое равновесие и заряжает p-область положительно относительно n-область (рис. 4).
При этом создается разность потенциалов, стремящаяся понизить величину барьера, как если бы к переходу было приложено напряжение φ в прямом направлении. Возникшее таким образом смещение p-n-перехода в прямом направлении вызывает прямой ток, образованный уже основными носителями и направленный противоположно току фотоносителей.
В случае, если внешняя цепь фотодиода разомкнута и , следовательно, внешнее напряжение отсутствует, то φ называют вентильной фотоэдс.
Вольт- амперная характеристика фотодиода
Пусть последовательно с фотодиодом (рис. 5) включен источник обратного напряжения Eвн и внешнее сопротивление R (фотодиодный режим работа прибора). В этом случае ток через p-n-переход создается потоком не- основных носителей и определяется уравнением
I= –If +Is(e-1). (2)
Знак «-» означает, что фототок фотодиода течет в обратном направлении.
Величина напряжения на переходе U является результатом совместного воздействия светового потока Φ, приводящего к возникновению фотоэдс, и напряжения источника питания Eвн. При больших отрицательных смещениях на переходе >> второе слагаемое обращается в -Is и
I= –If –Is (3)
В этом случае и темновой ток Is и фототок If не будут зависеть от напряжения.
При малых отрицательных смещениях
= << ,
I≈–If –Is ≈ –If . (4)
Благодаря малой инерционности фотодиодов, а также тому, что световая добавка тока If может быть получена при наличии большого нагрузочного сопротивления во внешней цепи, фотодиодный режим является основным при преобразовании световых сигналов в электрические в схемах автоматики.
Если внешнее напряжение отсутствует (вентильный режим работы фотодиода), и внешняя цепь замкнута накоротко, то U = 0, и ток во внешней цепи определяется только фототоком
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.