Повышение предела прочности при 300°С листов из титанового сплава

Страницы работы

Фрагмент текста работы

маркировка для более удобного восприятия дана как согласно ГОСТ 4784-97, так и согласно международному стандарту ISO 209-1.

1. Сплавы, упрочняемые давлением:

а) сплавы, обладающие низкой прочностью и высокой пластичностью. Свариваемые и коррозионно-стойкие.

К ним относятся нелегированный технический алюминий (маркировка АД0/1050А, АД1/1230 и пр.), а также алюминиевые сплавы с марганцем (АМц/3003, Д12/3004, ММ/3005);

б) сплавы, обладающие средней прочностью и высокой пластичностью. Свариваемые и коррозионно-стойкие.

К ним относятся так называемые магналии – сплавы, легированные магнием: Амг2/5251, АМг3/5754, АМг5/5056, АМг6 и пр.

2. Сплавы, упрочняемые термообработкой:

а) сплавы, обладающие средней прочностью и высокой пластичностью. Свариваемые.

К ним относятся так называемые авиали – сплавы, легированные магнием и кремнием, например АД31/6063, АД33/6061, АД35/6082;

б) сплавы, обладающие нормальной прочностью.

К ним относятся так называемые дюрали – сплавы, легированные медью и магнием, например алюминиевый сплав Д16/2024, Д1/2017, Д18/2117, а также алюминиевый сплав Д16Т и др.;

в) сплавы, обладающие нормальной прочностью. Свариваемые.

К ним относятся сплавы, легированные цинком и магнием: 1915/7005, 1925;

г) сплавы, обладающие высокой прочностью.

К ним относятся сплавы, легированные медью, магнием, никелем и железом – В95 и В93;

д) сплавы, обладающие высокой жаропрочностью.

К ним относятся сплавы, легированные медью, магнием, никелем и железом (АК4-1, АК) и сплавы, легированные медью и марганцем (1201/2219, Д20);

е) ковочные сплавы.

К ним относятся сплавы, легированные медью, магнием и кремнием (АК6, АК8/2014).

В зависимости от вида термической обработки алюминиевые сплавы маркируются следующим образом:

отожженный сплав – М;

сплав, нагартованный на ¼ – Н4;

сплав, нагартованный на ½ – Н2;

сплав, нагартованный на ¾ – Н3;

нагартованный сплав – Н.

1. ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

План эксперимента представляет собой полуреплику от полного факторного эксперимента типа . Ее определяющий контраст 1=, следовательно, для первых трех факторов  в матрице планирования записываем полный факторный эксперимент , а столбец приравниваем к произведению столбцов , то есть . Три последних опыта в матрице планирования представляют собой опыты на основном уровне. В последнем столбце записывают результаты опытов.

Таблица 1 – Условия эксперимента

Факторы

Zn, %

Толщина листа, мм

Температуры состояния С

Время старения, час

Основной уровень()

6

9

460

14

Интервалы варьирования()

1

1

10

4

Верхний уровень (+1)

7

10

470

18

Нижний уровень (-1)

5

8

450

10

План эксперимента в таблице 2 записан в кодовом масштабе.

Запишем его в таблицу 3 в натуральном масштабе. Кроме того, с помощью случайных чисел установим порядок реализации опытов.

Таблица 2- План эксперимента в кодовом масштабе

Номер опыта

y

1

+

+

+

+

+

6,75

2

+

-

+

+

+

5,25

3

+

+

-

+

-

5,75

4

+

-

-

+

-

4,25

5

+

+

+

-

-

7,50

6

+

-

+

-

-

8,50

7

+

+

-

-

+

7,00

8

+

-

-

-

+

5,50

9

0

0

0

0

0

5,75

10

0

0

0

0

0

6,25

11

0

0

0

0

0

7,00

Таблица 3- План эксперимента в натуральном масштабе

Номер опыта

Порядок реализации опытов

Zn, %

Толщина листа, мм

Температуры состояния,°C

Время старения, час

,кг/см

1

5

7

10

470

18

6,75

2

8

5

10

470

18

5,25

3

3

7

8

470

10

5,75

4

4

5

8

470

10

4,25

5

1

7

10

450

10

7,50

6

7

5

10

450

10

8,50

7

6

7

8

450

18

7,00

8

2

5

8

450

18

5,50

9

9

6

9

460

14

5,75

10

10

6

9

460

14

6,25

11

11

6

9

460

14

7,00

Запишем систему оценок коэффициента регрессии 1=.

                                           

                                             

                                             

                                             

                                             

                                          

                                          

Таким образом, выбранное планирование позволяет построить только линейную модель:

, коэффициенты которой смешаны с эффектами тройных взаимодействий факторов; все парные эффекты смешаны между собой.

2. ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА И ПОСТРОЕНИЕ МОДЕЛИ

2.1.Определение погрешности эксперимента

Расчет дисперсии и среднеквадратичной ошибки опыта.

О способах расчета дисперсии и среднеквадратичной ошибки  опыта.

Значение  рассчитываем по результатам трех опытов (опыты 9-11 в таблице 2 и 3) на основном уровне (таблица 4).

Таблица 4

Номер

1

2

3

5,75

6,25

7,00

0,55

0,05

0,7

0,3025

0,0025

0,49

Итак, дисперсия опыта оказалась равной 0,099 при числе степеней свободы =2.

Соответственно среднеквадратичная ошибка опыта:

2.2.Расчет коэффициентов регрессии

О способах расчета коэффициентов регрессии и их доверительных интервалов.

Коэффициенты регрессии считаем по формуле:

Доверительные интервалы коэффициентов рассчитываем по формуле:

Примем при этом N=8; из приложения 2:

=0,099 /8=0,012, следовательно:

Таким образом:

Сравним величины коэффициентов регрессии (по абсолютной величине) с их доверительными интервалами:

6,31 > 0,7

0,44  0,7

0,7   0,7

0,81  0,7

0,19  0,7

Таким образом, коэффициенты можно признать статистически значимым, а коэффициенты - статистически не значимыми и из модели исключаются.

Запишем линейную модель зависимости предела прочности алюминиевого сплава при 460 °С от факторов, влияющих на него:

У=6,31+0,7                      (2)

В уравнении (2) факторы входят в кодированном масштабе. От кодированных значений к натуральным и обратно можно переходить по формулам:

2.3.Проверка адекватности модели

Проверим адекватность модели (2)  по t-критерию, расчетное значение

Похожие материалы

Информация о работе