Выпишем формулу (2.12.5) при .
Получим По имеющейся таблице и
по только что написанной формуле можно
получить значение функции только для . Тогда и По
данной таблице можно получить еще два значения функции для , так как вклад последнего члена формулы
для меньше ,
поэтому для четвертые разности не
понадобятся (их нет для значений ). Структура формулы
для для этих значений не изменится, только
разности, входящие в формулу, сдвинутся по таблице для вверх,
а для - вниз на одну позицию (для они обведены пунктиром):
Задача наименьших квадратов возникает в самых различных областях науки и техники, например, к ней приходят при статистической обработке экспериментальных данных. Пусть функция задана таблицей приближенных значений , полученных с ошибками Предположим, что для аппроксимации функции используется линейная модель: где - заданные базисные функции, - параметры модели, являющиеся одновременно коэффициентами обобщенного многочлена. Часто используется одна из наиболее простых моделей - полиномиальная модель.
В случае, когда уровень неопределенности исходных данных высок, нет смысла требовать точного совпадения значений обобщенного многочлена в точках с заданными значениями , то есть использовать интерполяцию. Кроме того, при интерполяции происходит повторение ошибок наблюдений, в то время как при обработке экспериментальных данных желательно сглаживание ошибок. Тем не менее нужно потребовать, чтобы
(3.1.1)
Эта же система в матричной форме имеет вид (3.1.2)
Существуют разные дополнительные критерии, позволяющие решить эту систему, так как в общем случае при она, вообще говоря, несовместна. Выбор , позволяющий наилучшим образом удовлетворить (3.1.2) в методе наименьших квадратов, состоит в том минимизируется среднее квадратическое уклонение
(3.1.3)
Итак, линейная задача метода наименьших квадратов состоит в следующем. Надо найти обобщенный многочлен , для которого среднеквадратическое уклонение Этот многочлен называется многочленом наилучшего среднего квадратического приближения. Так как набор функций всегда заранее определен, задача заключается в нахождении вектора при условии Для решения нашей задачи воспользуемся общим приемом дифференциального исчисления, а именно выпишем необходимые условия экстремума функции нескольких переменных (приравняем частные производные нулю):
(3.1.4)
Тогда получим Изменим в первом слагаемом порядок суммирования:
(3.1.5)
Уравнение (3.1.5) называется нормальной системой метода наименьших квадратов.
Если вернуться к обозначениям формулы (3.1.2), то, как нетрудно видеть, систему (3.1.5) можно записать в виде
(3.1.6)
Матрица называется матрицей Грама[*]. Если еще ввести вектор , то система (3.1.6) перепишется в виде - система линейных уравнений относительно вектора . Можно показать, что если среди точек нет совпадающих и , то определитель системы (3.1.6) отличен от нуля, и, следовательно, эта система имеет единственное решение: Обобщенный полином с такими коэффициентами будет обладать минимальным средним квадратическим отклонением .
Если , то обобщенный многочлен, если система функций степенная, совпадает с полиномом Лагранжа для системы точек , причем При построение такого точного интерполяционного многочлена невозможно. Таким образом, аппроксимация функций представляет собой более общий процесс, чем интерполирование.
Если , то нормальная система (3.1.5) принимает следующий вид:
(3.1.7)
Запишем систему (3.1.7) в развернутом виде в двух наиболее простых случаях при
и В случае, когда приближение осуществляется многочленом первой степени , уравнения метода наименьших квадратов имеют следующий вид:
(3.1.8)
- нормальная система для в развернутом виде. Пусть теперь Аналогично получим
(3.1.9)
- нормальная система для в развернутом виде для квадратичного сглаживания.
Метод вычисления параметров с помощью решения нормальной системы кажется весьма привлекательным. Действительно, задача сводится к стандартной системе линейных алгебраический уравнений с квадратной матрицей. Однако вычислительная практика показывает, что без специального выбора базисных функций уже при нормальная система обычно оказывается плохо обусловленной
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.