Смысл терминов "Случайный эксперимент" и "Элементарные исходы случайного эксперимента". Статистическое определение вероятности случайного события

Страницы работы

Фрагмент текста работы

Контрольная работа

Контрольная работа состоит из двух частей: 1 часть – развернутый ответ в письменной форме на четыре теоретических вопроса, согласно варианту и 2 часть – выполнение практических заданий – решение  задач.

№ варианта

№ теоретических

вопросов

Практические задания (1-5)

Практическое задание №6

1

1, 11, 21, 31

1 вариант

ОБЩЕЕ ДЛЯ ВСЕХ ВАРИАНТОВ

2

2, 12, 22, 32

2 вариант

3

3, 13, 23, 33

3 вариант

4

4, 14, 24, 34

4 вариант

5

5, 15, 25, 35

5 вариант

6

6, 16, 26, 36

6 вариант

7

7, 17, 27, 37

7 вариант

8

8, 18, 28, 38

8 вариант

9

9, 19, 29, 39

9 вариант

0

10, 20,30,40

10 вариант

Список вопросов по теоретической части:

1.  Привести примеры детерминированных и случайных явлений.

2.  Объяснить смысл терминов "случайный эксперимент" и "элементарные исходы случайного эксперимента". Привести примеры.

3.  Понятие случайного события. Привести примеры случайных событий, невозможных и достоверных событий.

4.  Дать определение действий над событиями. Объяснить результаты действий над событиями с помощью диаграмм Эйлера-Венна.

5.  Привести примеры несовместных событий и событий, составляющих полную группу.

6.  Дать аксиоматическое определение вероятности случайного события. Перечислить свойства функций вероятности.

7.  Сформулировать классическое определение вероятности случайного события. Описать условия применимости классического определения.

8.  Сформулировать статистическое определение вероятности случайного события. Описать условия применимости статистического определения.

9.  Сформулировать геометрическое определение вероятности случайного события. Описать условия применимости геометрического определения.

10. Сформулировать определение условной вероятности случайного события. Проверить выполнение аксиом для функции условной вероятности.

11. Как вычисляется вероятность произведения случайных событий?

12. Дать определение независимых случайных событий и событий, независимых в совокупности.

13. Перечислить формулы для вычисления вероятности суммы событий и указать условия их применимости.

14. Вывести формулу связи между вероятностями взаимно-противоположных событий.

15. Вывести формулу вероятности наступления хотя бы одного из группы независимых в совокупности событий.

16. Доказать формулу полной вероятности и указать условия ее применимости.

17. Доказать формулы Байеса и описать область их применения.

18. Описать схему Бернулли повторных независимых испытаний и вывести формулу Бернулли для вероятности числа "успехов".

19. В каких случаях для вычисления вероятности числа наступлений события применяется формула Пуассона?

20. Объяснить назначение и способы применения локальной и интегральной формул Муавра-Лапласа.

21. Сформулировать определение случайной величины и привести примеры дискретных и непрерывных случайных величин.

22. Описать способы проверки независимости дискретных случайных величин

Похожие материалы

Информация о работе

Предмет:
Информатика
Тип:
Задания на контрольные работы
Размер файла:
132 Kb
Скачали:
0