Математические основы моделирования социальных сетей. Общие свойства различных видов сетей, описывающих процессы в сложных социальных системах

Страницы работы

3 страницы (Word-файл)

Фрагмент текста работы

Ключевые слова: социальная сеть, граф, вершины графа, транзитивность сети.

MATHEMATICAL FOUNDATIONS OF MODELING SOCIAL NETWORKS

Scientific Supervisor – А.А. Gorodov

Руководитель по иностранному языку –

Siberian State Aerospace University named after academician M. F. Reshetnev, Krasnoyarsk, Russian Federation, е-mail: vasilina-petrova@mail.ru

Аннотация статьи                                           

Преведены примеры социальных сетей. Рассмотрены проводимые ранее эксперементы. Рассмотрены общи свойства различных видов сетей, описывающих процессы в сложных социальных системах.

Keywords: social network graph, vertex transitivity network.

В настоящее время практически от каждого человека можно услышать такое словосочетание как, социальная сеть. Во второй половине XX в. это понятие начало активно использоваться на Западе при исследованиях социальных связей и человеческих отношений. Примеры социальных сетей: 1. Контакты между отдельными людьми (личные, онлайновые, деловые, профессиональные, криминальные и д.р.); 2. Сети совместной деятельности (соавторство научных статей, съёмка в одном фильме, членство в онлайн-сообществах и д.р.).

В 1969 году американскими психологами Стэнли Милгрэмом и Джеффри Трэверсом (Jeffrey Travers) была выдвинута «теория шести рукопожатий» о том, что каждый человек опосредованно знаком с любым другим жителем планеты через цепочку общих знакомых, в среднем состоящую из пяти человек. В разные года были проведены разные эксперименты, подтверждающие эту теорию. В 1967 эксперимент Стэнли Милгрома (“small world experiment”). Случайно выбранным жителям Омахи (Небраска) и Уичиты (Канзас) предлагалось переслать письмо адресату в Бостоне, используя только личные знакомства. Из 296 писем 64 достигли цели. Длина цепочки варьировалась от 2 до 10. Средняя длина цепочки – около 6. В 2003 был повторен эксперимент Милгрома, но с использованием электронной почты. Средняя длина цепочки около 6. Большой процент потери. В 2006 Исследовали сеть Youtube, Orkut и Flickr, средняя длина 4,25-5,88, диаметр графа 9-27. В 2011 исследовали Facebook, среднее расстояние 4.74.

Для описания моделий социальных сетей используються такие понятия как:

·  Расстояние между двумя вершинами.

·  Диаметр графа.

·  Степень вершины (это число ребер соединенных с заданной вершиной).

·  Распределение степеней вершины.

·  Меры центральности узла(closeness centrality и betweenness centrality).

·  Распределение меры центральности.

·  Коэффициент кластеризации.

·  Коэффициент ассортативности и д.р.

В случайном большом графе каждое ребро присутствует или отсутствует с равной вероятностью и распределения степени вершин биномиальное или пуассоновское. Далекие от распределении Пуассона распределения степени вершин в большинстве сетей искажены со скосом вправо - распределения имеют длинную правую хвостовую часть значений. При этом часть вершин в сети, которые имеющие степень k – определяются как pk. Для решения этой проблемы определения распределения степени вершин данные о степени представляют формированием кумулятивной функции распределения: , которая является вероятностью того, что степень ≥ k .

D. Watts и S. Strogatz (1998) указали, что большинство сетей имеют высокую транзитивность, называемую кластеризацией. Присутствие связей между вершинами A и B, и между B и C приводит к связи между A и C. Иначе: если B имеет двух соседей по сети A и C, то они связаны с другом друга на основании их общей связи с B. В топологических терминах: существует высокая плотность треугольников ABC (в сети) и кластеризация может быть определена количественно, измерением этой плотности:

C(1) = 3× (число треугольников на графе)/(число связных троек вершин), где "связная тройка" – вершина, соединенную непосредственно с неупорядоченной парой других вершин. Фактически, C измеряет часть троек, которые имеют третье ребро для формирования треугольника. Множитель "3" приведен для учета того, что каждый треугольник входит в три тройки, поэтому 0≤C≤1.

Альтернативное определение индекса кластеризации (Watts and Strogatz, 1998) следующее:

.

Для вершин со степенью 0 или 1: Ci = 0 . Тогда индекс кластеризации в среднем по сети:

.

В теории моделирования социальных сетей на данном этапе сформировались три основных направления:

1. Нахождение статистических свойств, которые характеризуют поведение

Похожие материалы

Информация о работе