При построении структуры поля нужно учесть,
что в объемном резонаторе, созданном на базе прямоугольного волновода, характер
изменения поля вдоль поперечных координат Х и У такой же, как и в волноводе.
Необходимость соблюдения граничных условий у поперечных стенок резонатора () приводит к тому, что
электрическое и магнитное поля в объемном резонаторе смещаются относительно
друг друга на четверть длины волны по сравнению с положением полей в волноводе.
Таким образом, структуру поля в объемном резонаторе можно построить по
известной картине поля в волноводе с теми же индексами m и n ( см. например
[8.1, с. 222-223] ).
7.3. Для построения структуры распределения
токов на стенках волновода (п.3.2 домашнего задания) необходимо знать вектор
поверхностной плотности тока проводимости . Величину и направление
определяют из граничных условий для тангенциальных
составляющих магнитного поля у идеального металла
,
(7.2)
где
- вектор магнитного
поля у стенки резонатора;
- нормаль к поверхности, направленная из
металла.
7.4. Способы возбуждения колебаний в резонаторах (п.3.3 домашнего задания) совпадают c соответствующими способами возбуждения волн заданного типа в волноводах (см. [8.1, с. 279-281] ).
Общие принципы возбуждения волноводов изложены также в указаниях к лабораторной работе №4 настоящего пособия.
7.5. При определении длины объемного
резонатора для получения резонанса на колебаниях заданного типа (п.3.4 домашнего
задания) следует иметь в виду, что резонансная частота связана
с геометрическими параметрами резонатора а, b, l и параметрами среды
, заполняющей резонатор,
соотношением
.
(7.3)
Используя (7.3), нетрудно получить выражение для резонансной длины прямоугольного резонатора l:
,
( 7.4 )
где
- резонансная длина
волны.
7.6. Расчет добротности ненагруженного
прямоугольного резонатора (п.3.5 домашнего задания) с колебаниями магнитного и
электрического типов может быть выполнен с помощью соотношений , приведенных в
[8.1, с. 363-370]. Например, для колебаний типа в
прямоугольном резонаторе добротность определяется соотношением
,
(7.5)
где - активная часть поверхностного сопротивления
металлических стенок резонатора.
Выражение (7.5) справедливо для ненагруженного объемного резонатора. Это необходимо принять во внимание при сравнении результатов расчета и эксперимента.
Реально достижимые цифры добротностей, как правило, несколько ниже предсказываемых теоретическими формулами (в том числе и (7.5)), поскольку они не учитывают потери в трущихся контактах между боковой поверхностью и подвижным короткозамыкателем, с помощью которого настраивается резонатор. Кроме того, расчетные соотношения не учитывают шунтирующего действия внешних цепей, оказывающих влияние через элементы связи.
7.7. При исследовании характера изменения добротности прямоугольного объемного резонатора в зависимости от частоты колебаний и объема (при изменении длины) следует иметь в виду интегральное соотношение для добротности объемного резонатора (см. [8.1, с. 239-241]).
8. Библиография.
Федоров Н.Н. Основы электродинамики: Учеб. пособие для вузов. - М.: Высш. шк., 1980. - С.224-229, 238-241, 375-378.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.