1.3. Измерение диаграммы направленности электрического излучателя в меридиональной плоскости (расстояние между излучателями около 15 см).
1.4. Измерение диаграммы направленности электрического излучателя в экваториальной плоскости (установить вертикальный передающий излучатель, изменить ориентацию приемного диполя, расстояние между излучателями около 15 см).
1.5. Измерение диаграммы направленности передающего излучателя с экраном в меридиональной плоскости (установить горизонтальный передающий излучатель, установить металлический экран с опорами параллельно передающему излучателю на расстоянии четверти длины волны от него [25 мм]).
2. Исследование ЭМИ
2.1. Измерение диаграммы направленности в экваториальной плоскости (частота 3000 МГц, излучающая щель расположена вертикально).
2.2. Измерение диаграммы направленности в меридиональной плоскости (частота 3000 МГц, излучающая щель расположена горизонтально).
Теоретическая часть.
1. Для исследования зависимости составляющей Еθ от расстояния r в ближней и дальней зонах оценим область изменения r. В ближней зоне область r выбирается из условия Учитывая, что и (что соответствует ), получим В дальней зоне область r выбирается из условия . Учитывая, что и (что соответствует ), получим
2. Построим график зависимости составляющей Еθ от расстояния r в ближней зоне диполя (). Зависимость удобно строить в нормированном виде, приняв напряженность поля при r = 1 см за единицу.
,
где – ток, протекающий по диполю, – длина диполя, ,
3. Построим график зависимости составляющей Еθ от расстояния r в дальней зоне диполя (). Зависимость удобно строить в нормированном виде, приняв напряженность поля при r = 10 см за единицу.
,
где – ток, протекающий по диполю, – длина диполя, ,
4. Построим диаграммы направленности ЭЭИ в экваториальной и меридиональной плоскостях. Диаграммы направленности строятся в полярной системе координат. Для построения удобно взять нормированную диаграмму:
В экваториальной плоскости (плоскости поля Н) нормированная диаграмма имеет вид окружности, т. к. составляющие поля от угла не зависят.
В меридиональной плоскости (плоскости поля Е) диаграмма направленности имеет вид двух окружностей ( в полярных координатах).
5. Учитывая, что среда, окружающая излучатель – воздух (), рассчитаем сопротивление излучения диполя на частоте 3000 МГц.
6. Зная, что рассчитаем напряженность электрического и магнитного полей. Расчет производится исходя из формул:
а выражается из формулы .
Выразим ,.
Получим ,
7. Диаграмма направленности электрического вибратора с экраном в меридиональной плоскости строится, исходя из аналитического выражения:
Здесь – расстояние между вибратором и металлическим экраном.
Диаграмма измеряется в плоскости при расстоянии . Тогда
При этом металлический экран ограничивает область излучения
8. Получив выражения для составляющих поля магнитного вибратора в дальней зоне (используя принцип перестановочной двойственности):
,
построим диаграммы направленности ЭМИ в экваториальной и меридиональной плоскостях.
Также как и для ЭЭИ, в экваториальной плоскости нормированная диаграмма имеет вид окружности, т. к. составляющие поля от угла не зависят.
В меридиональной плоскости диаграмма направленности имеет вид двух окружностей ( в полярных координатах):
Вывод: В ходе лабораторной работы убедились, что ДН в ближней зоне обратно пропорциональна кубу r, a дальней зоне – r. Также убедились, что ЭЭИ не излучает в направлении своей оси, в меридиональной плоскости нормированная диаграмма направленности описывается формулой и не зависит от . В экваториальной плоскости ДН имеет форму окружности.
При установке металлического экрана наблюдали излучение только с одной стороны.
Графики диаграммы направленности у ЭМИ строили с применением щелевого излучателя. Их форма также как и у ЭЭИ в меридиональной плоскости – , в экваториальной – окружность.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.