Расширитель лазерного луча с дифракционным фильтром

Страницы работы

Фрагмент текста работы

Гиперболические каустики, ограничивающие поле гауссова пучка вокруг оси симметрии (т. е. вокруг оси z) — однополостный гиперболоид вращения — называется каустической поверхностью или просто каустикой гауссова пучка. Это название пришло из геометрической оптики.

Отметим, что в продольном направлении гауссов пучок можно разбить на три части. В центральной части, при, поперечные размеры пучка сравнительно мало меняются с изменением z. В двух же периферийных частях,z > b и z < — b, поперечные размеры пучка заметно растут с ростом  и при большихпропорциональны .

Зависимость плотности энергии на оси пучка от продольной координаты z определяется предэкспоненциальным множителем в (9). Легко видеть, что эта плотность в центральной части пучка () примерно постоянна, в периферийных же частях при она обратно пропорциональна.

Рассмотрим теперь фазовое распределение в гауссовом пучке, т. е. найдем фазу в различных точках, занимаемых полем гауссова пучка. Фаза как функция г и z определяется частью показателя экспоненты в (6), заключенной в круглые скобки, перед которыми стоит мнимая единица г. Из этого выражения видно, что фаза квадратичным образом зависит от расстояния г до оси z и довольно сложным образом от z. Однако эти сведения не слишком наглядны. Более интересен другой подход, при котором отыскиваются условия постоянства фазы. Приравняв константе выражение в круглых скобках в (6), приходим к уравнению, связывающему z и r, т. е. определяющему некоторую поверхность в области, занимаемой пучком. Такая поверхность называется поверхностью постоянной фазы или волновым фронтом.

Представление о волновом фронте играет важную роль как в теории волн вообще, так и в теории лазерных резонаторов — в этом мы убедимся позднее.

Представим уравнение волнового фронта в виде

                                   (12)

где — то значение z, при котором , т. е. координаты  являются координатами точки пересечения волнового фронта с осью z. Придавая  те или иные значения, будем получать различные волновые фронты данного гауссова пучка. Правую часть в (12) можно представить в виде

Так как угол всегда меньше своего тангенса, то вычитаемое в этом выражении меньше, чем

Но это последнее выражение значительно меньше, чем, так как (при см, см). Следовательно, вторым слагаемым в (28) всегда можно пренебречь.

Теперь из уравнения (12) видно, что разность по модулю всегда меньше или. Действительно, так как множитель

в левой части (12) всегда меньше или порядка , что следует, например, из уравнения гиперболы (11), то в целом из (12) следует, что . Полагая, вследствие этого в левой части (12), получим для волнового фронта уравнение параболы

                                                                                                   (13)

Таким образом, волновой фронт гауссова пучка имеет форму параболоида вращения. С хорошей точностью можно утверждать также, что этот фронт является сферическим, поскольку сфера радиуса

                                                             (14)

и параболоид (13) практически совпадают при тех значениях r, где амплитуда пучка еще заметно отлична от нуля.

Следовательно, зависимость радиуса кривизны волнового фронта гауссова пучка от продольной координаты описывается соотношением (14) и показана на рис. 1.2, а. Кривизна волнового фронта — величина обратная радиусу кривизны — равна

и как функция  показана на рис. 1.2, б.

Рис. 1.2. Зависимость радиуса кривизны R(а) и кривизны (б) от продольной

Похожие материалы

Информация о работе

Тип:
Курсовые работы
Размер файла:
346 Kb
Скачали:
0