Характеристики двухпроводных линий передачи, основные определения и соотношения. Элементы фидерного тракта, страница 2

Коаксиальные СН (рис.1.2б) выполняют как с пленочным, так и с объемным поглотителем. В СН с пленочным поглотителем сопротивление 1 представляет участок внутреннего проводника коаксиальной линии из диэлектрика с нанесенным на него поглощающим слоем. Это может быть и стандартный резистор. Экспоненциальная форма внешнего проводника 2, а также конус 3 обеспечивают хорошее согласование в полосе частот.

1.2.2.Аттенюаторы (ослабители)

Аттенюаторы - это двухплечные устройства, предназначенные для ослабления и регулировки мощности сигнала, проходящего по СВЧ тракту. Основными параметрами, характеризующими аттенюаторы, являются: величина вносимого ослабления, пределы регулировки ослабления, точность калибровки ослабления, KСВ входа и выхода, допустимая мощность рассеивания, тип и геометрические размеры основного тракта.

Аттенюаторы бывают постоянные и переменные. Переменные аттеню-аторы позволяют плавно или скачкообразно изменять вели-чину ослабления мощности. Поглощающие аттенюаторы также, как и поглощающие нагрузки, превращают СВЧ мощность в тепло. Отличие аттенюатора от СН сводится фактически к наличию у него выхода. Поглощающая плас-тина (одна или две) (рис.1.3) либо неподвижна (фиксированные аттенюаторы), либо перемещается от узкой стенки, где затухание близко к 0, к центру волновода, где оно максимально.

Ослабление может также достигаться путем изменения глубины погруже-ния поглощающей пластины параллельно вектору Е через узкую неизлуча-ющую щель в широкой стенке (аттенюаторы ножевого типа). Величина ослабления, получаемого с помощью поглощающих аттенюаторов, может изменяться в пределах 0 - 40 дБ. Для большего ослабления применяют 2 и более последовательно соединенных аттенюаторов, что дает повышение  точности  отсчета ослабления. КСВ со входа и выхода не более 1,1 - 1,2.

Фиксированные аттенюаторы   в коаксиальном исполнении выполняются обычно на базе стандартных пленочных резисторов типа УНУ (R1) и УНУШ (R2) по схеме симметричного Т-образного четы-рехполюcлюсника (рис.1.4).

1.2.3. Реактивные элементы в линиях передачи

Реактивные элементы применяются при решении вопросов согласования, создании резонаторов и фильтров. Роль реактивных элементов могут выполнять штыри, диафрагмы, шлейфы.

Штыри в волноводе. Наибольшее применение нашел металлический штырь (стержень), введенный в прямоугольный волновод через его широкую стенку и направленный вдоль линий электрического поля (рис.1.5). Эквивалент-ной схемой штыря является эквивалентная проводимость jB, шунтирующая линию передачи. Нормированное значение проводимости штыря зависит от его длины l, диаметра d и места расположения на широкой стенке волновода.

Теория и практика показывают, что при l < λВ/4 и d << λВ/4 реактивная проводимость носит емкостный характер. При l ≈ λВ/4 имеет место резонанс последовательного типа (такой штырь называется резонанс-ным), проводимость принимает бес-конечно большое значение, т.е. вол-новод оказывается закороченным. Дальнейшее увеличение длины штыря приводит к тому, что его эквивалентная реактивная проводимость приобретает индуктивный характер. Штырь, полностью, перемыкающий противоположные широкие стенки волновода, не создает шунтирующей емкости и является индуктивным.

В технике СВЧ нашли применение также емкостные штыри, перемыка-ющие противоположные узкие стенки волновода и лежащие перпендикулярно линиям электрического поля. Такая конструкция обладает повышенной электрической прочностью и более высоким значением пробивной мощности