Водород в железе и других металлах, страница 14

Характерно, что продукт взаимодействия водорода с торием по сравнению с водородными производными всех остальных металлов содержит наибольшее количество водорода и отвечает по составу соотношению ТhН3,75, т. е. приближается к составу, соответствующему максимальной валентности элементов IV группы. Плотность водородсодержащего тория почти на 30% меньше плотности металла, в то время как для остальных элементов подгруппы титана изменение плотности при взаимодействии с водородом составляет примерно 15%.

Простейшие гидриды элементов подгруппы углерода — углерода, кремния, германия, олова, свинца являются четырехвалентными и соответствуют общей формуле МеН4. Термическая стабильность гидридов элементов IV группы постепенно уменьшается с увеличением атомного веса этих элементов и радиуса атома.

Подгруппа ванадия V группы. Взаимодействие водорода с ванадием, ниобием и танталом во многом аналогично. Химических соединений точного стехиометрического состава в этих системах не обнаружено. Поскольку абсорбция и десорбция водорода вызывают необратимые изменения структуры металлического тантала, возможно наличие в системе тантал — водород и, по-видимому, в системе ниобий — водород некоторой доли химических связей промежуточного типа.

Простые гидриды азота, фосфора, мышьяка, сурьмы и висмута имеют общую формулу МеН3. Гидриды элементов V группы менее стойки, чем элементов IV и VI групп. Большинство элементов V группы, помимо простых гидридов типа NH3, образует и более сложные соединения с водородом.

Из элементов подгруппы хрома VI группы — хрома, молибдена, вольфрама и урана изучен только гидрид урана UH3. Химическая связь в этом соединении объясняется, возможно, наличием водородных мостиков, но отнюдь не ковалентностью, что согласуется со свойствами UH3. Образование гидрида урана сопровождается резким (почти на 42%) уменьшением плотности урана. Такая степень уменьшения плотности является максимальной среди изученных водородных производных металлов и по порядку величины, соответствует увеличению плотности, наблюдаемому при образовании гидридов щелочных металлов I группы. О получении химических соединений точного стехиометрического состава при взаимодействии водорода с хромом, молибденом и вольфрамом достоверных сведений нет.

Гидриды элементов этой группы можно получить прямым взаимодействием элементов с водородом. В ряду Н2О, H2S, H2Se, H2Te и Н2Ро термическая стойкость гидридов быстро уменьшается.

Относительно химического взаимодействия водорода с элементами VIII группы периодической системы — железом, никелем и кобальтом — в литературе имеются противоречивые данные. Естественно, возникают сомнения в реальном существовании гидридов этих элементов. Взаимодействие водорода с железом, кобальтом и никелем при повышенных температурах не является химическим процессом в общепринятом смысле. Однако это еще не доказывает невозможности существования гидридов этих элементов.

Многие исследователи сообщают о получении продуктов, которые, по их мнению, являются гидридами. Так, имеются сведения о получении косвенным путем гидридов железа — FeH, FeH2 и FеН3, стабильных при температуре ниже 150° С, выше которой они разлагаются. Сообщалось и о получении гидридов никеля и кобальта. Полученные продукты представляли собой темные тонкодисперсные пирофорные порошки. Согласно одним авторам, вещества этого типа , в действительности, представляют собой не гидриды, а тонкодисперсные восстановленные металлы, содержащие значительные количества водорода, физически адсорбированного на поверхности. Другие считают, что адсорбированный водород находится на поверхности металла в атомарном состоянии и образует химическую связь с атомами металла.

О химическом взаимодействии водорода с остальными элементами VIII группы (за исключением палладия) имеется очень мало согласующихся между собой данных.

В табл. 5 приведены имеющиеся данные об изменении плотности металлов при взаимодействии с водородом.