Метод простой итерации
Пусть дано уравнение f(x)=0 и в интервале (a,b) существует корень. Из (a,b) выбирается начальное значение x0.
При уточнении корня методом простой итерации уравнение приводится к виду:
(1)
Где
-
некоторая функция от x.
Если
функция
и ее производная
непрерывны
на всем интервале поиска корня, то при выполнении условия
(2)
метод простых итераций сходится.
Из
интервала [a,b] выбирается начальное приближение x0, подставляется в
уравнение (1) и получается новое приближение
. По
аналогии находится второе приближение
и так
далее, наконец,
(3).
Критерий окончания итерационного процесса имеет вид:
. (4)
Численный пример
Рассмотрим функцию
. Один из промежутков локализации [0,3;1].
Вычислить корень уравнения с точностью
. Определить
количество итераций.
Приведем уравнение к виду
(1).
, отсюда
.
Найдем производную
.
Пусть начальное приближение x0=1, тогда
. Условие сходимости метода (2)
выполняется.
Определяем
.
Вычисляем
. Так как модуль разности двух приближений
больше ε, то вычисляем следующее значение x2.
.
Вычисляем
, поэтому вычисляем
и
т.д.
Ниже приводится алгоритм вычисления корня уравнения методом простой итерации:


Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.