# Решение нелинейного алгебраического уравнения с действительными коэффициентами вида a1+a2x+a3x2+...+x6=0, страница 2

real*8 esp,ess(9),ai(7),a(7),b(7),em,emo,eso,al(6),be(6)

complex*16 z(6),zk(6)

data ess/0.000000001,0.00000001,0.0000001,0.000001,0.00001,0.0001,

*         0.001,0.01,0.1/

esp=1.d-3

n=6

n1=n+1

do 101 ii=1,8

print*,'  al ->'

print*,'  be ->'

call n1yfu(n,al,be,z,n1,ai)

call n1ymsd(n,n1,ai,a,b,zk,esp,kmo,km)

call n1yem(z,zk,n,em,emo,eso)

write (*,103) ii,em,emo,eso,km,kmo

write (22,103) ii,em,emo,eso,km,kmo

101   continue

103   format (2x,i2,3(2x,e11.4),2(2x,i3))

do 2 i=1,7

write(1,*)ai(i)

2     continue

write(1,*) ' '

do 3 i=1,6

write(1,*) z(i)

3     continue

write(1,*)' '

do 4 i=1,6

write(1,*) zk(i)

4     continue

write(1,*)' '

write(1,*)em,emo,eso

write(1,*)km,kmo

stop

end

5.Результаты вычислений

Для корней вида 1:

Порядок алгебраического уравнения N = 6.

Параметр  останова  EPS = 0,1D–6.

Коэффициенты алгебраического уравнения:

 A(1)= 112896,00000000000000000 A(2)= -28224,00000000000000000 A(3)= -3676,00000000000000000 A(4)= 1360,00000000000000000 A(5)= -21,00000000000000000 A(6)= -16,00000000000000000 A(7)= 1,00000000000000000

Корни уравнения и их оценки:

 XI(1) = -7,00000000000000000;   0,00000000000000000E-01 XI(1) = -6,99999999999999911;   0,00000000000000000E-01 XI(2) = -6,00000000000000000;   0,00000000000000000E-01 XI(2) = -6,00000000000000000;   0,00000000000000000E-01 XI(3) = 6,00000000000000000;   0,00000000000000000E-01 XI(3) = 6,00000000000001243;   0,00000000000000000E-01 XI(4) = 7,00000000000000000;   0,00000000000000000E-01 XI(4) = 6,99999999999997424;   0,00000000000000000E-01 XI(5) = 8,00000000000000000;   0,00000000000000000E-01 XI(5) = 7,99999998985375171;   0,00000000000000000E-01 XI(6) = 8,00000000000000000;   0,00000000000000000E-01 XI(6) = 8,00000001014626072;   0,00000000000000000E-01

Погрешности  Eм=0,1269E-02,  Eмо=0,1587E-03,  Eсо=0,1039E-03

Макс, кол–во итераций на один корень  KM = 26

Общее кол–во итераций  KMO = 79

Для корней вида 2:

Порядок алгебраического уравнения N = 6

Параметр  останова  EPS = 0,1D–6

Коэффициенты алгебраического уравнения:

 A(1)= 903168,00000000000000000 A(2)= 166656,00000000000000000 A(3)= 15376,00000000000000000 A(4)= 104,00000000000000000 A(5)= 50,00000000000000000 A(6)= 10,00000000000000000 A(7)= 1,00000000000000000

Корни уравнения и их оценки:

 XI(1) = -7,00000000000000000;       7,00000000000000000 XI(1) = -7,00000000000000000;       7,00000000000000000 XI(2) = -7,00000000000000000;      -7,00000000000000000 XI(2) = -7,00000000000000000;      -7,00000000000000000 XI(3) = -6,00000000000000000;       6,00000000000000000 XI(3) = -6,00000000000000000;       6,00000000000000000 XI(4) = -6,00000000000000000;      -6,00000000000000000 XI(4) = -6,00000000000000000;      -6,00000000000000000 XI(5) = 8,00000000000000000;       8,00000000000000000 XI(5) = 8,00000000000000000;       8,00000000000000000 XI(6) = 8,00000000000000000;      -8,00000000000000000 XI(6) = 8,00000000000000000;      -8,00000000000000000

Погрешности  Eм=0,5610E-08,  Eмо=0,9350E-09,  Eсо = 0,3816E-09