# Исследование итерационного метода спуска решения нелинейного алгебраического уравнения, страница 2

n=6

write(7,*)'N=',n,' EPS=',eps

write(7,*)'Џ®§. Emo       LgEmo   Eco       LgEco     KM  KMO'

call n1yfu(n,al1,be1,zi,na,ai)

call n1ymsd(n,na,ai,a,b,zk,eps,kmo,km,fname)

call n1yem(zi,zk,n,em,emo,eso)

write(7,1) 1,emo,log10(emo),eso,log10(eso),km,kmo

call n1yfu(n,al2,be2,zi,na,ai)

call n1ymsd(n,na,ai,a,b,zk,eps,kmo,km,fname)

call n1yem(zi,zk,n,em,emo,eso)

write(7,1) 2,emo,log10(emo),eso,log10(eso),km,kmo

call n1yfu(n,al3,be3,zi,na,ai)

call n1ymsd(n,na,ai,a,b,zk,eps,kmo,km,fname)

call n1yem(zi,zk,n,em,emo,eso)

write(7,1) 3,emo,log10(emo),eso,log10(eso),km,kmo

call n1yfu(n,al4,be4,zi,na,ai)

call n1ymsd(n,na,ai,a,b,zk,eps,kmo,km,fname)

call n1yem(zi,zk,n,em,emo,eso)

write(7,1) 4,emo,log10(emo),eso,log10(eso),km,kmo

call n1yfu(n,al5,be5,zi,na,ai)

call n1ymsd(n,na,ai,a,b,zk,eps,kmo,km,fname)

call n1yem(zi,zk,n,em,emo,eso)

write(7,1) 5,emo,log10(emo),eso,log10(eso),km,kmo

call n1yfu(n,al6,be6,zi,na,ai)

call n1ymsd(n,na,ai,a,b,zk,eps,kmo,km,fname)

call n1yem(zi,zk,n,em,emo,eso)

write(7,1) 6,emo,log10(emo),eso,log10(eso),km,kmo

call n1yfu(n,al7,be7,zi,na,ai)

call n1ymsd(n,na,ai,a,b,zk,eps,kmo,km,fname)

call n1yem(zi,zk,n,em,emo,eso)

write(7,1) 7,emo,log10(emo),eso,log10(eso),km,kmo

call n1yfu(n,al8,be8,zi,na,ai)

call n1ymsd(n,na,ai,a,b,zk,eps,kmo,km,fname)

call n1yem(zi,zk,n,em,emo,eso)

write(7,1) 8,emo,log10(emo),eso,log10(eso),km,kmo

close(7)

eps=1D-9

open(7,FILE='3.txt')

write(7,*)'EPS        lgESP    EMO          lgEMO           ECO

*lgECO   KM   KMO'

do 2 i=1,10

call n1yfu(n,al2,be2,zi,na,ai)

call n1ymsd(n,na,ai,a,b,zk,eps,kmo,km,fname)

call n1yem(zi,zk,n,em,emo,eso)

write(7,3) eps,log10(eps),emo,log10(emo),eso,log10(eso),km,kmo

eps=eps*10

2     continue

close(7)

eps=0.1D-6

fname='3.dat'

call n1yfu(n,al2,be2,zi,na,ai)

call n1ymsd(n,na,ai,a,b,zk,eps,kmo,km,fname)

eps=1D-9

fname='4.dat'

open(7,FILE='4.txt')

write(7,*)'EPS        lgESP    EMO          lgEMO           ECO

*lgECO   KM   KMO'

do 5 i=1,10

call n1yfu(n,al5,be5,zi,na,ai)

call n1ymsd(n,na,ai,a,b,zk,eps,kmo,km,fname)

call n1yem(zi,zk,n,em,emo,eso)

write(7,3) eps,log10(eps),emo,log10(emo),eso,log10(eso),km,kmo

eps=eps*10

5     continue

close(7)

eps=0.1D-6

call n1yfu(n,al5,be5,zi,na,ai)

call n1ymsd(n,na,ai,a,b,zk,eps,kmo,km,fname)

1     format(I5,F10.7,F8.3,F10.7,F8.3,I5,I5)

3     format(E8.1,F9.3,E14.4,F8.3,E14.4,F8.3,I5,I5)

end

Порядок алгебраического уравнения N= 6

Параметр останова EPS=  6.00000021222513169E-07

Коэффициенты алгебраического уравнения:

A(1)= 262144.00000000000000000

A(2)= 196608.00000000000000000

A(3)= 61440.00000000000000000

A(4)= 10240.00000000000000000

A(5)= 960.00000000000000000

A(6)=48.00000000000000000

A(7)=1.00000000000000000

Коpни уравнения и их оценки:

XI(1)=(      -8.00000000000000000,   0.00000000000000000E-01) X(1)=(      -8.05643154476579504,   5.64348849989073295E-02)

XI(2)=(      -8.00000000000000000,   0.00000000000000000E-01) X(2)=(      -8.05643154476579504,  -5.64348849989073295E-02)

XI(3)=(      -8.00000000000000000,   0.00000000000000000E-01) X(3)=(      -8.05207926699404552,   1.87686915948856968E-06)

XI(4)=(      -8.00000000000000000,   0.00000000000000000E-01) X(4)=(      -8.05207926699404552,  -1.87686915948856968E-06)

XI(5)=(      -8.00000000000000000,   0.00000000000000000E-01) X(5)=(      -7.89148926083828872,       0.12035969879695899)

XI(6)=(      -8.00000000000000000,   0.00000000000000000E-01) X(6)=(      -7.89148926083828872,      -0.12035969879695899)

Погрешности

Em= 0.12035969879695899

Emo= 0.12035969879695899

Eco=  1.35674824088488424E-02

Макс. кол-во итераций на один корень KM=36

Общее кол-во итераций KMO=70

Влияние вида корней на точность и количество итераций

N=6    EPS=1.00000000000000002E-03

Поз.   Emo       LgEmo    Eco      LgEco   KM  KMO

1 0.0000001  -7.073 0.0000001  -7.254   45  107

2 0.0000090  -5.047 0.0000043  -5.370    8   20

3 0.0000000  -7.494 0.0000000  -7.670   25   34

4 0.0017637  -2.754 0.0001869  -3.728   18   36

5 0.0729709  -1.137 0.0639921  -1.194   26   65

6 0.0000074  -5.130 0.0000046  -5.335   17   31

7 0.0077452  -2.111 0.0015746  -2.803   31   45

8 0.0002649  -3.577 0.0001378  -3.861   16   32

Влияние параметра EPS на точность и количество итераций. N=6, Xi = –8, iÎ[1, 6]

EPS        lgEPS         EMO          lgEMO           ECO               lgECO   KM   KMO