The Role of Intelligent Systems in the National Information Infrastructure, страница 3

The workshop included a presentation by NSF of IITA program goals and a brief discussion of a report aimed at identifying important AI research thrusts that could support the development of twenty-first century computing systems.[1] That report, as well as the full set of initial suggestions for it from AAAI

fellows and officers, was circulated to attendees prior to the workshop. Workshop attendees identified specific contributions that AI research could make in the next decade to the technology base needed for NII/IITA and the major research challenges that had to be met. This report records the results of these discussions. It is organized to follow the IITA program description produced by the HPCCIT IITA Task Group.[2]

The time from workshop presentation to written report was long, arduous, and fraught with debate and difficult decisions. We thank the editors for their efforts in producing this report. Special thanks to Dan Weld for his dedication and perseverance; his skill in unifying the varied contributions was critical to this report.

--Barbara Grosz, President, AAAI

1. Introduction

The National Information Infrastructure (NII) will have a profound effect on the education, lifestyle, and well-being of Americans from every corner of society. The infrastructure will transport critical information and software to every home, open educational and training opportunities to remote communities, and accelerate commerce by reducing the time to develop new products and increasing the efficiency of markets. Because electronic delivery is orders of magnitude faster than traditional transport, the NII will create new markets in information services and will spur development of strategic applications in areas such as health care, environmental monitoring, and advanced manufacturing.

The NII is expected to grow to include a million networked information repositories that support fast access to medical images, interactive product simulations, digital libraries, and multimedia educational materials. Current trends in semiconductor density, processor speed, and network bandwidth suggest that the infrastructure will be thousands of times larger than existing systems such as the Internet; the array of services supported by the NII will be unimaginably vast.

But, who will be able to use the NII and take advantage of the opportunities it offers? Most people have no formal training in computers. They have little interest in the computer itself; rather, they want to find something or someone or accomplish some task. No matter how fast the computers of the future become, the NII will not achieve its full potential unless the infrastructure is flexible and easy to use. Instead of forcing a user to remember how and where to access information, NII computers need to understand a user’s task, guide him or her to the correct place, and show the user what he or she wants. Instead of requiring that users "surf" the net to find new sites, the NII should automatically track users’ interests and inform them of relevant possibilities. Instead of being a source for data, the NII should be a source for services and solutions. Today’s computer systems are rigid and complex; they require users to learn arcane languages rather than adapting to the way people naturally communicate and work. To prevent critical limitations in the NII, we must understand how people reason about the world and how they interact with each other; and we must engineer our machines to do the same.

Artificial intelligence (AI) uses the theoretical and experimental tools of computer science to study the phenomena of intelligent behavior and to construct intelligent systems. The field is diverse and multifaceted--it addresses one of the most profound scientific problems, and also develops practical technology. AI research has also produced an extensive body of principles, representations, algorithms, and spin-off technologies. Successful applications range from the DART system, which was used in deployment planning for Desert Shield, to broadly adopted symbolic math packages, such as Mathematicareg., to thousands of fielded expert systems[3]. Incorporating AI technology into the next generation of computers forming the NII can help ensure that the nation’s information infrastructure is both flexible and easy to use.